博碩士論文 104324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.133.126.245
姓名 李姿儀(Tzu-Yi Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 化學鍍製備金電極葡萄糖感測器
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近幾年來,得到糖尿病的人逐漸變多。葡萄糖感測器的需求逐漸變多,增進血糖試紙的消耗量。通常製作的黃金電極是以化學沉積法所製作而成,此方法成本較高。本研究利用低成本的化學鍍的方法制,可以製作出黃金血糖試紙。首先,利用不同的基板製作圖型,本研究採用三種方法,第一種為利用含鈀觸媒之油墨利用網印方式作為基板,第二種為利用曝光顯影製作出的基板進行化學鍍形成黃金電極,最後一種是利用銅箔基板當做基底進行化學鍍得到最終電極。
不同的基板先利用之前研究所發現的化鍍條件製作成黃金電極,之後再進行化學分析電子光譜儀、附著力測試和電化學測試,瞭解特性。其中電化學測試主要以循環伏安法與計時安培法進行研究。結果顯示:以網印膠體鈀作為基板使用非次磷酸鈉還原劑進行還原後,化鍍鎳鈀金可得到最終金電極。接著,曝光顯影基板,需加強附著力外,在化鍍製程下相當容易得到放大製成樣品。最後銅箔基板進行化鍍鎳鈀金時可相當容易得到產品。當中,電極金屬層厚度可透過下列條件得到最佳金電極。其中,化鍍鎳槽溫度可控制在76~80oC,時間約為5 分鐘,可得到0.5~0.7 m 的鎳層厚度;而鈀厚度在0.02 m較佳,溫度控制在50oC 下,時間約為3 分鐘;最後,金層厚度約為0.05 m 為金電極測試最佳條件其溫度控制在80oC,時間約為8 分鐘。
摘要(英) Nowadays, the number of people with diabetes has increased rapidly; thus the glucose biosensors have been developed and played an important role for glucose monitoring. Glucose biosensor with gold electrode was produced by CVD method which has high production cost.
The purpose of this study was to develop a process with electroless plating to make the glucose biosensor with gold electrode and to find the optimal process for three different substrates. The first substrate was produced by screen printing method using palladium as the catalyst, the second one was prepared by lithography method, and the last base material was made by copper-clad laminate.
All of the substrates with different methods were made by electroless plating method. The samples were characterized by X-ray photoelectron spectroscopy, adhesion test, cyclic voltammetry method. The results illustrated that three substrates with electroless plating can be used to produce the stripe. One substrate used by screen printing
method was reduced by reduction agent without sodium hypophosphite. Another substrate with lithography method needs to reinforce adhesion on PET. The base material made by copper-clad laminate easily used electroless plating to get final product. The optimum operation conditions of electroless reactors for nickel were at the range of temperature with 76 to 80 oC and dipping time with 5 min; palladium and gold were at temperature of 50 oC and 80 oC, respectively. The dipping time of palladium and gold was 3 min and 8 min, respectively. The thickness of nickel, palladium and gold were about 0.5 to 0.7 m, 0.02 m and 0.08 m, respectively.
關鍵字(中) ★ 生物感測器
★ 化學電鍍
★ 金電極
★ 電化學測試
關鍵字(英) ★ biosensors
★ electrochemistry test
★ gold electrode
★ electroless plating
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 糖尿病簡介 2
1-3 目前市售血糖試紙比較 3
1-4 研究動機與目的 3
第二章 文獻回顧 5
2-1 感測器簡介 5
2-2 化學感測器簡介 5
2-3 生物感測器簡介 6
2-3-1 生物感測器定義與基本結構 6
2-3-2 生物感測器分類 8
2-3-3 生物感測器設計 9
2-4 葡萄糖感測器之反應機制 11
2-5 化學鍍反應機制 13
2-6 印刷電路板製作電化學生物感測器簡介 16
2-6-1 網印法(Screen printing method) 16
2-6-2 曝光顯影法(Lithography method) 17
2-7 電化學分析 18
2-7-1 循環伏特法(Cyclic Voltammetry, CV) 18
第三章 實驗方法 21
3-1 實驗材料與藥品 22
3-2 化鍍設備與分析儀器 22
3-2-1 清洗槽 22
3-2-2 微蝕槽 23
3-2-3 酸洗槽 23
3-2-4 預浸槽 24
3-2-5 活化槽 24
3-2-6 速化槽 25
3-2-7 後浸槽 26
3-2-8 還原槽 26
3-2-9 化鍍鎳槽 27
3-2-10 化鍍鈀槽 27
3-2-11 化鍍金槽 28
3-2-12 儀器介紹 28
3-2-13 分析儀器 30
3-3 生物感測器製備 34
3-3-1 網印膠體鈀製法 34
3-3-2 曝光顯影製法 35
3-3-3 銅箔製成法 36
3-4 電化學特性分析操作方法 37
第四章 結果與討論 39
4-1 網印鈀基板製程 39
4-1-1 網印膠體鈀基板 39
4-1-2 網印基板化鍍結果 43
4-2 曝光顯影 50
4-3 銅箔基板 54
4-4 電化學測試 59
4-4-1 基板循環伏安法測試 59
4-4-2 碳電極電化學測試 60
4-4-3 公司A 基板黃金電極電化學測試 61
4-4-4 公司B 基板黃金電極電化學測試 62
4-4-5 銅箔基板黃金電極電化學測試 63
第五章 結論 66
參考資料 67
參考文獻 1. NCD-RisC, Worldwide trends in diabetes since 1980: a pooled analysis of 751
population-based studies with 4.4 million participants. The Lancet, 2016. 387(10027):
p. 1513-1530.
2. IDF, Diabetes Atlas, 7 Editor. 2015.
3. In vitro diagnostic test systems -- Requirements for blood-glucose monitoring systems
for self-testing in managing diabetes mellitus, I. 15197, Editor. 2013, ISO/TC 212
Clinical laboratory testing and in vitro diagnostic test systems: 2.
4. Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use; Draft
Guidance for Industry and Food and Drug Administration Staff; Availability. 2014,
Food and Drug Administration, HHS.
5. 張慈映, 血糖計市場分析. 工研院 IEK
6. 譯者:王誠之, M.C., 梅約醫學中心:糖尿病. 2002, 台灣: 天下生活.
7. T. C., P.H., B. T., S. V., G. M., F. T., and P. A., Accuracy evaluation of five blood
glucose monitoring systems obtained from the pharmacy: a European multicenter
study with 453 subjects. Diabetes Technol Ther., 2012. 4.
8. 黃莉棋、陳瑜忻、李治中、林慶齡, 由最新的國際標準規格看血糖機精準的必要
性與影響檢測準確的因素. 內科學誌, 2016. 27: p. 239-247.
9. 一之瀨昇, 小.陳., 曹永偉編譯, 感測器原理與應用技術. 測定儀器 - 技術, ed.
二版. 民85: 全華科技.
10. 高士軒、翁艾慧, 臨床醫療生物感測器發展及技術應用. 化工, 2014. 5(61): p.
70-78.
11. 陳詩喆、李嘉平, 電流式葡萄糖生物感測器之製程及測試, in 化學工程系. 民98,
國立台灣科技大學.
12. M. A., T.S., K. F., J. S. and S. S. Proceedings of the International Meeting of
Chemical Sensors, Fukuoka, Elsevier, Amsterdam. in International Meeting on
Chemical Sensors. 1983. Denki Kagaku Kyōkai (Japan).
13. 田蔚城, 生物技術, ed. 初版. 民85, 臺北市: 眾光出版.
14. V. P., a.U.H., Advances in biosensors: Principle, architecture and applications.
Journal of Applied Biomedicine, 2013. 12(1): p. 1-15.
15. S. F, S.F., P. D, H. R, D. I, R. R, W. U, R. K, P. M, K. M, et al., Research and
development of biosensors : a review. . Analyst, 1989. 114(6): p. 653-662.
16. L.C. C., a.C.L., Electrode Systems for Continuous Monitoring in CardiovascularSurgery. Ann. NY. Acad. Sci., 1962. 102: p. 29-45.
17. T.Z. W., H.H.W., and L.-C. A., Gene probe biosensor coated Piezoelectric for
biochemical analysis. Chinese J. Microbial. Immunol., 1989. 23(2): p. 147-154.
18. G., G.G., Determination of formaldehyde with an enzyme-coated piezoelectric crystal
detector. Anal. Chem., 1983. 55: p. 1682-1684.
19. C. S., a.I.W., Calorimetry as an analytical tool in biochemistry and biology. Methods
Biochem Anal., 1976. 23(0): p. 1-159.
20. G., J.K., Analytical Solution Calorimetry. 1985, New York Wiley.
21. K. R., a.B.D., Principles and applications of thermal biosensors. Biosensors and
Bioelectronics, 2001. 16(6): p. 417-423.
22. Y. W., H.X., and J. Z. G. L., Electrochemical Sensors for Clinic Analysis. Sensors,
2008. 8(4): p. 2043-2081.
23. M. Y., G.J., and C. J., Ion Sensitive Field Effect Transducer-based Biosensors.
Biotechenol. Adv., 2003. 21(6): p. 527–534.
24. S., D., MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS
Nano, 2014. 8(4): p. 3992-4003.
25. d. M. NJ, F.M., Surface Plasmon Resonance: A General Introduction. Mehods Mol.
Biol., 2010. 627: p. 1-14.
26. A., I., Handbook of Biosensors and biochips. Overview of Optical Biosensing
Techniques. 2008, New York, U.S.A.: John Wiley & Sons.
27. L., B., Current Status of Micro- and Nano-Structured Optical Fiber Sensors. Optical
Fiber Tech., 2009. 15(3): p. 209-221.
28. F. L., a.C.T., Optical Biosensors: Present & Future. Optrode-based fiber optic
biosensors. 2002: Elsevier Science.
29. S. S., Y.Z., W. Z., P. L., J. H., and G. L., Surface stress-based biosensors. Biosens
Bioelectron., 2014. 51(15): p. 124-135.
30. L. N., M.G., F. C., P. R., S. H., E. T., J.-M. F., J.-P. M., A.-M. C., E. C., and C. B.,
Resonating piezoelectric membranes for microelectromechanically based bioassay:
detection of streptavidin–gold nanoparticles interaction with biotinylated DNA.
Sensors and Actuators B: Chemical, 2005. 110(1): p. 125-136.
31. M.Y., S.B., and B. D., The enzyme thermistor—A realistic biosensor concept. A
critical review. Analytica Chimica Acta, 2013. 766(5): p. 1-12.
32. W., J., Electrochemical Glucose Biosensors. Chem. Rev., 2008. 108(2): p. 814–825.
33. A. P.F. T., B.C., and S. A. P., In Vitro Diagnostics in Diabetes: Meeting the
Challenge. Clinical Chemistry, 1999. 45(9): p. 1596–1601.
34. B., F.-G., Chemical Sensors and Biosensors: Fundamentals and Applications. 2012:
John Wiley & Sons.
35. P., I.V., Of the Mechanism Governing the Growth of Electrolessly Deposited
Nickel–Phosphorus Coatings. Russian Journal of Electrochemistry, 2007. 43(1): p.
34-41.
36. H. L., N.L., S. B., and D. L., Gold Immersion Deposition on Electroless Nickel
Substrates. Journal of The Electrochemical Society, 2007. 154(12): p. 662-668.
37. 林定皓, 多層與高密度電路板全覽. 2002, 桃園市: 亞洲智識科技.
38. J.A. O., a.F.L.H., A Study of the Off-Contact Screen Printing Process- Part I: Mode
of the Printing Process and Some Results Derived From Experiments. Browse
Journals & Magazines, 1990. 13(2): p. 358-367.
39. 施敏;李明逵, 半導體元件物理與製作技術. 2013: 交大出版社.
40. M., M.J., Manufacturing Techniques for Microfabrication and Nanotechnology., ed. 3.
2011: CRC Press.
41. B., A.R., Optical Issues in Photolithography, in OpenStax-CNX module. 2009. p. 1-5.
42. 胡啓章, 電化學原理與方法. 2011, 臺北市: 五南.
43. A. J. B., a.L.R.F., Electrochemical Methods: Fundamentals and Applications., ed. 2.
2001, New York: Wiley.
指導教授 陳郁文 審核日期 2017-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明