博碩士論文 103686602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.16.82.140
姓名 阮金英(Kim-Anh Nguyen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 整合遙感,GIS和AHP評估越南承天順化省的生態環境脆弱度
(Integrating Remote Sensing, GIS, and AHP to Assess Eco-environmental Vulnerability for the Thua Thien-Hue Province, Vietnam)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 發展遙測資料反演可感熱與潛熱通量之研究★ GPS信號估算可降水量與降雨關係之研究
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生態環境脆弱度評估對於環境和資源管理至關重要。然而,要進行大範圍的生態環境脆弱度評估則是一個困難而複雜的過程,因為它受許多變數的影響,包括水文氣象、地形、土地資源和人類活動。越南承天順化省(Thua Thien–Hue Province)擁有豐富的自然人文景觀,香水河(Perfume River)為境內最大的流域系統,對越南中北部沿岸地區的社會經濟發展非常重要,但卻缺乏環境管理上該有的環境保護分區制度。
  本研究以衛星遙測資料結合層級分析法(Analytic Hierarchy Process, AHP)與地理資訊系統(Geographical Information System, GIS)分析,對越南承天順化省建立一個可評估生態環境脆弱度的量化指標。依時空尺度之脆弱度變化,指標共區分為六個等級之脆弱程度(潛在、輕微、少量、中等、嚴重、非常嚴重)。研究中以三年(1989, 2003, 2014)的Landsat影像資料,探討越南承天順化省的生態環境脆弱度時空變化。並將三年分為1989-2003及2003-2014兩個時期,以出現「嚴重」及「非常嚴重」兩種脆弱度指標的範圍變化為例,嚴重脆弱度佔研究區域的面積百分比於1989、2003及2014年分別由5.9%、7.9%、增加至15%,非常嚴重脆弱度的面積百分比則由1.2%、3.2%增加至7.3%,此兩等級脆弱度主要發生於都市化地區、裸露地、半裸露地、農地與稀疏林地;相反的,在「潛在」脆弱度的表現上,則有相當大的下降趨勢:所佔面積百分比於1989、2003及2014年分別由36.4%、30.9%、增加至19.2%。其餘的脆弱度(輕微、少量與中等)所佔面積百分比為微幅波動,於2003及2014年分別呈現遞增與減少趨勢,不同脆弱度程度所佔面積百分比呈現時空變化的原因可歸納為:1) 砍伐、農業密集化與2003至2014年間三個水力發電計畫的建造;2) 都市化地區的擴張,導致相對於鄉村地區有明顯熱特徵(thermal signatures)的差異。這些發現說明人為的活動導致土地利用與土地覆蓋(LULC)的變遷,擴大生態環境脆弱度,進而增加越南承天–順化省的天然災害潛勢。研究結果發現:地表溫度與常態化差異建物指數NDBI呈現正相關,於1989、2003及2014年分別為0.87、0.89與0.84;而地表溫度與常態化差異植生指標NDVI,則呈現負相關,於1989、2003及2014年分別為-0.81、-0.81與-0.76。除此之外,從1989-2003至2003-2014兩個時期,出現潛在、輕微與中等的熱環境(thermal environment)所佔面積範圍呈現下降趨勢,另由區域規模的角度觀察得知,增加土地變遷的人為活動,已加劇研究區域的環境脆弱度。本研究應用遙測資料結合AHP與GIS分析技巧評估大區域的長期生態環境改變過程,未來可有效應用於其他區域。
摘要(英)
Eco-environmental vulnerability assessment is crucial for environmental and resources management. However, evaluation of eco-environmental vulnerability over large areas is a difficult and complex process because it is affected by many variables including hydrometeorology, topography, land resources, and human activities. The Thua Thien–Hue Province and its largest river system, the Perfume River, are vital to the social-economic development of the north central coastal region of Vietnam, but there is no zoning system for environmental protection in this region.
This dissertation conducts an evaluation of eco-environmental vulnerability and analysis of influencing factors using Landsat data time series and is organized according to the increased use of satellite-derived land surface variables in the assessment framework.
Chapter 3 presents an assessment framework that is proposed to evaluate the vulnerable eco-environment in association with 16 variables with six of them constructed from Landsat 8 satellite image products. The remaining variables were extracted from digital maps, and in situ measurement data. Each variable was evaluated and spatially mapped with the aid of an analytical hierarchy process (AHP) and geographical information system (GIS). An eco-environmental vulnerability map is assorted into six vulnerability levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities, representing 14%, 27%, 17%, 26%, 13%, 3% of the study area, respectively. It is found that heavy and very heavy vulnerable areas appear mainly in the low and medium lands where socio-economic activities have been developing rapidly. Tiny percentages of medium and heavy vulnerable levels occur in high land areas probably caused by agricultural practices in highlands, slash and burn cultivation and removal of natural forests with new plantation forests. Based on our results, three ecological zones requiring different development and protection solutions are proposed to restore local eco-environment toward sustainable development.
Chapter 4 introduces an improved assessment framework proposed to combat insufficient historical data measurement to examine the eco-environmental changes in both spatial distribution and vulnerable magnitude over the past 20 years (1989-2014) with involvement of 12 variables, mainly retrieved from satellite data with incorporation of analytical hierarchy process (AHP). Six vulnerability levels of potential, slight, light, medium, heavy, and very heavy were graded to depict changes of vulnerability over temporal and spatial scales. The proposed approach was employed to study spatiotemporal eco-environmental vulnerability with Landsat data acquired in 1989, 2003, and 2014 for the Thua Thien - Hue Province, Vietnam. Over the time periods of 1989-2003 and 2003-2014, both heavy and very heavy vulnerability levels exhibit an increasing trend in both magnitude and spatial size: The former raised from 5.9% in 1989, to 7.9% in 2003, and 15% in 2014; and the later increased from 1.2% in 1989, to 3.2% in 2003, and 7.3% in 2014. Both levels mainly appeared on urbanized area, bare land, semi-bare land, agricultural land, and sparse forests. In contrast, there was a significant decline in potential vulnerability level with 36.4% in 1989, 30.9% in 2003, and 19.2% in 2014, while the remaining vulnerability levels slight, light, and medium fluctuated slightly, increased in 2003 and decreased in 2014. Supporting reasons for such changes include: (1) deforestation, agriculture intensification, construction of three hydro-electric projects during the period 2003-2014; and (2) significant expansion of urbanized area leading to differences in thermal signatures in urban areas as compared with rural areas. The findings demonstrate that eco-environmental vulnerability is primarily exaggerated by anthropogenic activities through land use/land cover (LULC) changes and further enhanced by natural processes including disasters in the Thua Thien - Hue Province of Vietnam. The correlation between land surface temperature (LST) and Normalized Difference Built-up Index (NDBI) is found to be positively correlated with 0.87, 0.89, and 0.84 for 1989, 2003, and 2014, respectively. In contrast, LST-Normalized Difference Vegetation Index (NDVI) is found negatively correlated with respect to the spatiotemporal trend of environmental vulnerability with -0.81, -0.81, and -0.76 in 1989, 2003, and 2014, respectively. In addition, areas having potential, slight, and medium thermal environmental levels are decreased from 1989-2003 to 2003-2014. At the regional scale, increased anthropogenic activities through land’s modification have intensified the eco-environmental vulnerability in the study area. The currently proposed methodology is feasible for evaluating long-term eco-environmental changes processes by using remote sensing data, and valid for the other regions and proper planning for land use and construction in the future.
Chapter 5 presents summary and conclusions that include the major findings and contributions of the dissertation and recommendation for future research.
關鍵字(中) ★ 脆弱度
★ 生態環境變化
★ 層次分析法
★ 大地衛星數據
★ 遙測
★ 承天順化省
關鍵字(英) ★ Vulnerability
★ Remote Sensing
★ Eco-environment changes
★ Landsat data
★ AHP
★ Thua Thien-Hue Province
論文目次
LIST OF FIGURES iv
LIST OF TABLES vii
摘 要 viii
A B S T R A C T ix
CHAPTER 1. Introduction 1
1.1 Overview 1
1.2 Background (Vulnerability in eco-environment) 2
1.2 Objectives 3
1.3 Scientific Contribution and Innovation 3
CHAPTER 2. Study Area and Data Collection 4
2.1. Study Area Description 4
2.2 Connection Between Eco-environmental Vulnerability and Disaster 6
2.3 Data Collection and pre-processing 7
2.3.1 Data Collection 7
2.3.2 Data Pre-Processing 8
CHAPTER 3. Zoning eco-environmental vulnerability for environmental management and protection 10
3.1 Introduction 10
3.2 The Proposed Eco-environmental Vulnerability Assessment Framework 12
3.3 Variable/factor description 17
3.3.1. Hydro-meteorology (B1) 17
3.3.2. Society-economics (B2) 17
3.3.3. Land resource (B3) 18
3.3.4. Topography (B4) 18
3.4. Calculation of variable and class weights 18
3.5. Results and discussion 18
3.5.1 Hydro-meteorological impact 19
3.5.2 Land resource impact 19
3.5.3 Topographical impact 20
3.5.4. Social-economic impact 21
3.5.5 The correlation analysis between environmental variables derived from Landsat 8 satellite image 23
3.5.6. Eco-environmental vulnerability analysis 24
3.5.6.1 Eco-environmental vulnerability distribution 24
3.5.6.2 Partition for eco-environmental protection and management 25
3.5.6.3 Proposed actions for the three regional types 27
CHAPTER 4: Assessing spatiotemporal eco-environmental vulnerability by Landsat data 28
4.1 Introduction 28
4.2 Methods 30
4.2.1 Image processing 30
4.2.2 Assessment framework 31
4.3 Results 34
4.4 Discussion of influential factors 39
4.4.2 Land surface temperature (LST) 41
4.4.3 The correlation analysis between land surface thermal anomalies and land cover change and its association with eco-environmental vulnerability changes 43
4.4.4 Remarks for eco-environmental management 44
CHAPTER 5: Summary and Conclusions 46
5.1 Summary 46
5.2 Conclusions 48
5.3 Recommendations for future research 50
REFERENCES 51
APPENDIX A 58
A.1 Pre-processing of Landsat satellite data and calculation of environmental variables 58
A.2 Hydro-meteorology (B1) 64
A.3 Social-economics (B2) 65
A.4 Land resource (B3) 67
A.5 Topography (B4) 72
APPENDIX B 73
CURRICULUM VITAE 79
APPENDIX C 85
AWARDS 85
參考文獻

Adger, W.N., 2000. Institutional Adaption to Environmental Risk under Transition in Vietnam. Annals of Association of American Geographers 90(4), 738-758.
Adger N., 2002. Indicators of social and economic vulnerability to climate change in Vietnam. CSERGE Working paper Gec. 98-07.
Adger, N., 2006. Vulnerability. Global Environmental Change 16, 268-281.
Adler-Golden, S. Berk, A.; Bernstein, L. Richtsmeier, S. Acharya, P. Matthew, M. Anderson, G. Allred, C. Jeong, L. Chetwynd, J., 1998. In Flassh, a modtran4 atmospheric correction package for hyperspectral data retrievals and simulations, Proc. 7th Ann. JPL Airborne Earth Science Workshop. pp 9-14.
Artis D.A. and Carnahan W.H., 1982. Survey of emissivity variability in thermography of urban areas, Remote Sens. Environ. 12, 313–329.
Beckman M., 2011. Converging and conflicting interests in adaptation to environmental change in central Vietnam, Dev. 3 (1), 32–41.
Bhushan N. and Rai K., 2004. Strategic Decision Making: Applying the Analytic Hierarchy Process, Springer-Verlag; New York, 172.
Boori, M. S., & Amaro, V. E., 2011. Natural and eco-environmental vulnerability assessment through multi-temporal satellite data sets in Apodi valley region, Northeast Brazil. J. Geography and Regional Planning Vol. 4(4): 216-230.
Chander G., Markham B.L. and Helder D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ and EO-1 ALI sensors, Remote Sens. Environ. 113, 893–903.
Chen X.-L., Zhao H.-M., Li P.-X. and Yin Z.-Y., 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Sens. Environ. 104 (2), 133–146.
Cortes, C. & Vapnik, V., 1995. Support-Vector Networks. Machine Learning 20 (3), 273–297. doi:10.1023/A:1022627411411.
Dao P.D. and Liou Y.-A., 2015. Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data, Remote Sens.7 (5), 5077–5097, http://dx.doi.org/10.3390/rs70505077.
de Smith, M., Goodchild, M.-F., Longley, P.-A., 2015. Geospatial Analysis - 5th Edition, The Winchelsea Press, Winchelsea, UK.
Fahmy H.M.A., 2001. Reliability evaluation in distributed computing environments using the AHP, Comput. Netw. 36, 579–615.
Gao B.-C., 1996. NDWI- a normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ. 58 (3), 257–266.
General Statistics Office of Vietnam., 2014. Statistical Yearbook of Vietnam https://www.gso.gov.vn/Default_en.aspx?tabid=491.
Gowrie, 2003 M.N. Gowrie., 2003. Environmental vulnerability index for the Island of Tobago, West Indies, Conserv. Ecol. 7(2), 2003, 11.
Gupta R.P. and Joshi B.C., 1990. Landslide hazard zoning using the GIS approach: a case study from the Ramganga catchment, Himalayas, Eng. Geol. 28, 1990, 119–131.
Hay S.I., Snow R.W. and Roger D.J., From predicting mosquito habitat to Malaria seasons using remotely sensed data: practice, problems and perspectives, Parasitol. Today 14 (8), 1990, 306–313.
Hao, H.M., & Ren, Z. Y., 2009. Land use/land cover change (LULC) and eco-environment response to LULC in Farming-Pastoral zone, China. Agricultural Sciences in China Vol. 8(1) :91-97.
Hinkel, J., 2011. Indicators of vulnerability and adaptive capacity: Towards a clarification of the science–policy interface. Global Environmental Change 21(1): 198-208.
Hsu W.C., Lin E.K., Chang K.T., Chang H.C., Liu J.K. and Liou Y.A., 2015. Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin county, Taiwan, Remote Sens. 7, 2015, 8202–8223, http://dx.doi.org/10.3390/rs70608202.
http://www.greenfacts.org.
https://www.gdrc.org.
Jackson T.J., Chen D., Cosh M., Li F., Anderson M., Walthall C., et al., 2004. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans, Remote Sens. Environ. 92, 475–482.
Jin S. and Sader S.A., 2005. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, Remote Sens. Environ. 94 (3), 2005, 364–372.
Jimenez-Munoz, J.C., Cristóbal, J., Sobrino, J.A., Sòria, G., Ninyerola, M., and Pons, X., 2009. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Transactions on Geoscience and Remote Sensing Vol. 47, No. 1, 339-349.
Knight E.J. and Kvaran G., 2014. Landsat-8 operational land imager design, characterization and performance, Remote Sens. 6(11), 10286–10305.
Lai V.S., Wong B.K. and Cheung W., 2001. Group decision making in a multiple criteria environment: a case using the AHP in software selection, Eur. J. Operational. Res. 137, 134–144.
Lambin, E., Geist, H., & Lepers, E., 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28, pp. 205-241.
Lawley, E. F., Lewis, M. M., Ostendorf, B., 2016. A remote sensing spatiotemporal framework for interpreting sparse indicators in highly variable arid landscapes. Ecological Indicators 60, 1284-1297.
Liu, L., & Zhang, Y., 2011. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing 3(12): 1535-1552.
Li A., Wang A., Liang S. and Zhou W., 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS-a case study in the upper reaches of Minjiang River, China, Ecol. Model. 192 (1-2), 175–187.
Li L., Shi Z.-H., Yin W., Zhu D., Ng S.L., Cai C.-F. and Lei A.L., 2009. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the Danjiangkou reservoir area, China, Ecol. Model. 220 (23), 2009, 3439–3447.
Li P., Jiang L. and Feng Z., 2013. Cross- comparison of vegetation indices derived from Landsat-7 enhanced Thematic Mapper Plus (ETM) and Landsat-8 Operational Land Imager (OLI) sensors, Remote Sens. 6 (1), 2013, 310–329.
Li R., Dynamic assessment on regional eco-environmental quality using AHP-statistics model: a case study of Chaohu Lake Basin, Chin. Geogr. Sci.17(4),2007, 341–348.
Li Z.-W., Zeng G.-M., Zhang H., Yang B. and Jiao S., 2007. The integrated eco-environment assessment of the red soil hilly region based on GIS-a case study in Changsha City, China, Ecol. Model. 202 (3–4), 2007, 540–546.
Liou, Y.A., Nguyen, K.A., Li, M.H., Lin, C.Y., 2015. Landsat 8 operational land imager derived variables for environmental risk assessment in Taoyuan, IGARSS, July 26-31, Milan, Italy, DOI: 10.1109/IGARSS.2015.7325904.
Liou Y.A., Liu H.L., Wang T.S. and Chou C.H., 2015a. Vanishing ponds and regional water resources in Taoyuan, Taiwan, Terr. Atmos. Ocean. Sci. 26, 161–168, http://dx.doi.org/10.3319/TAO.2014.12.02.01(EOSI).
Liou Y.A., Wang T.S. and Chan H.-P., 2015b. Impacts of pond change on the regional sustainability of water resources in Taoyuan, Taiwan, Adv. Meteorol. http://dx.doi.org/10.1155/2013/243456, 6 p.
Liu L. and Zhang Y., 2011. Urban heat island analysis using the Landsat TM data and ASTER data: a case study in Hong Kong, Remote Sens. 3 (12), 1535–1552.
Malczewski. J., 2003. GIS-based land-use suitability analysis: a critical overview. Progress in Planning Volume 62, Issue 1, July 2004, Pages 3–65.
Mallick, J., Rahman, A., & Singh, C. K., 2013. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advanced in Space research. 52, 639-655.
M. de Smith, M.-F. Goodchild, P.-A., 2015. Longley Geospatial Analysis (5th edition). The Winchelsea Press, Winchelsea, UK.
Miller, R. B., & Small, C., 2003. Cities from space: potential applications of remote sensing in urban environmental research and policy. Environmental Science & Policy 6(2): 129-137.

MoNRE., 2003. Vietnam Initial National Communication under the United Nations Framework Convention on Climate Change, Hanoi, Vietnam.
Nguyen, A. K., Liou, Y.A., Li, M. H., & Tran, T. A., 2016. Zoning eco-environmental vulnerability for environmental management and protection, Ecol. Indic. Vol 69, 100–117. doi:10.1016/j.ecolind.2016.03.026.
Nguyen. A.K, V. Phonekeo, V. C. My, N D Duong and P. T Dat., 2014. Environmental hazard mapping using GIS and AHP – A case study of Dong Trieu District in Quang Ninh Province, Vietnam. IOP Conf. Ser.: Earth Environ. Sci. 18 012045.
Park, Y.-S., Chon, T.-S., Kwak, I.-S., 2004. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks, Total Environ. 327, 105–122.
Patterson M.W. and Yoo S.R., 1998. Mapping fire-induced vegetation mortality using Landsat Thematic Mapper Data: a comparison of linear transformation techniques, Remote Sens. Environ. 65, 132–142.
Peche R. and Rodríguez E., 2012. Development of environmental quality indexes based on fuzzy logic. A case study, Ecol. Indic. 23, 2012, 555–565.
Purevdorj T.S., Tateishi R., Ishiyama T. and Honda Y., 1998. Relationships between percent vegetation cover and vegetation indices, Int. J. Remote Sens. 19 (18), 3519–3535.
Roy, D. P., M. A. Wulder, T. R. Loveland, W. C.E, R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, J. Huntington, C. O. Justice, A. Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne and Z. Zhu., 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145: 154-172.
Polsky, C., Neff, R., & Yarnal, B., 2007. Building comparable global change vulnerability assessments: The vulnerability scoping diagram. Global Environmental Change 17(3-4): 472-485.
Ostendorf, B., 2011. Overview: Spatial information and indicators for sustainable management of natural resources. Ecological Indicators 11, 97-102.
Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York.
Saaty T. and Vargas L., 2001. Methods, Concepts and Applications of the Analytic Hierarchy Process, KLUWEI Academic Publishers, Boston.
Strand, L. B., Tong, S. S., Aird, R & McRae, D., 2010. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia. BMC Public Health 10: 441.
Sener S., Sener E., Nas B. and Karagüzel R., Combining AHP with GIS for landfill site selection: a case study in the Lake Beysehir catchment area (Konya, Turkey), Waste Manag .30, 2010a, 2037–2046.
Sener S., Sener E. and Karagüzel R. Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent-Uluborlu (Isparta) Basin, Turkey, Environ. Monit. Assess. 2010b,http://dx.doi.org/10.1007/s10661-010-1403-x.
Sobrino J.A., Jimenez-Munoz J.C. and Paolini L., 2004. Land surface temperature retrieval from Landsat TM 5, Remote Sens. Environ. 90, 434–440.
Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., 2008. Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 2, 316-327.
Song G., Chen Y., Tian M., Lv S., Zhang S. and Liu S., 2010. The ecological vulnerability evaluation in Southwestern Mountain Region of China based on GIS and AHP method, Proc. Environ. Sci. 465–475.
Thanh L.N. and De Smedt F., 2011. Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien-Hue Province, Vietnam, Environ. Earth Sci. 66 (7), 2011, 1739–1752.
Tong T.M.T., Shaw R. and Takeuchi Y., 2012. Climate disaster resilience of the education sector in Thua Thien-Hue Province, Central Vietnam, Nat. Hazards 63 (2), 2012, 685–709.
Tran P., Marincioni F., Shaw R., Sarti M. and Van An L., 2007. Flood risk management in Central Viet Nam: challenges and potentials, Nat. Hazards 46 (1), 119–138.
Tran P. and Shaw R., 2007. Towards an integrated approach of disaster and environment management: a case study of Thua Thien–Hue Province, central Viet Nam, Environ. Hazards 7(4), 271–282.
TTHPPC, Geography Book (in Vietnamese)., 2005. Thua Thien-Hue Provincial People Committee; Hue City.
Tung Y.K., 1983. Point rainfall estimation for a mountainous region, J. Hydraul. Eng.109, 1386–1393.
Tehrany, M. S., Pradhan, B., & Jebur, M. N., 2013. Remote Sensing Data Reveals Eco-Environmental Changes in Urban Areas of Klang Valley, Malaysia: Contribution from Object Based Analysis. Journal of the Indian Society of Remote Sensing 41(4): 981-991.
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A., 2003. A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci U S A 100(14): 8074-8079.
UNDP., 2003. Reducing Disaster Risk, A Challenging for Development.
Valor E. and Caselles V., 1996. Mapping land surface emissivity from NDVI: application to European, African, and South American areas, Remote Sens. Environ. 57, 167–184, (18).
Waner T. and Chen X., 2001. Normalization of Landsat thermal imagery for the effects of solar heating and topography, Int. J. Remote Sens. 22, 773–788.
Wang S.-Y., Liu J.-S. and Yang C.-J., 2008. Eco-environmental vulnerability evaluation in the Yellow River Basin, China, Pedosphere, 18 (2), 171–182.
Wang X.D., Zhong X.H., Liu S.Z., Liu J.G., 2008. Wang Z.Y. and Li M.H., 2008Regional assessment of environmental vulnerability in the Tibetan Plateau: development and application of a new method, J. Arid Environ. 72(10), 1929–1939.
Watson D.F. and Philip G.M., 1985. A refinement of inverse distance weighted interpolation, Geo-Processing, 2, 1985, 315–327.
Watson K., 1992. Spectral ratio method for measuring emissivity, Remote Sens. Environ. 42, 1992, 113–116.
Xu Y., Sun J., Zhang J., Xu Y., Zhang M. and Liao X., 2012. Combining AHP with GIS in synthetic evaluation of environmental suitability for living in China′s 35 major cities, Int. J. Geogr. Inform. Sci. 26(9), 1603–1623.
Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C., 2012. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens, 4, 2033–2056.Valor, E., & Caselles, V., 1996. Mapping Land Surface Emissivity from NDVI: Application to European, African, and South American Areas, Remote Sens. Environ. 57, 167-184(18).
Xie, H., Wang, P., & Huang, H., 2013. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China. International Journal of Environmental Research and Public Health,10(1), 328–346. http://doi.org/10.3390/ijerph10010328.
Ying X., Zeng G.M., Chen G.Q., Tang L., Wang K.L. and Huang D.Y., 2007. Combining AHP with GIS in synthetic evaluation of eco-environment quality: a case study of Hunan Province, China, Ecol. Model. 209(2-4), 97–109.
Valipour, M., 2015. Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, Vol 5, Issue 4, pp 367–395.
Valipour, M., 2016. Variations of Land Use and Irrigation for Next Decades Under Different Scenarios. Irriga: Brazilian journal of irrigation and drainage, 1:1, pp 262-288.
Waner, T., & Chen, X., 2001. Normalization of Landsat thermal imagery for the effects of solar heating and topography. International Journal of Remote Sensing. 22,773-788.
Wilson, J. S., Clay, M., Martin, E., Stuckey, D., & Vedder-Risch, K., 2003. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment. 86(3): 303-321.
Zeng X.B., Dickinson R.E., Walker A., Shaikh M., DeFries R.S. and Qi J.G. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. Appl. Meteorol. 39, 2000, 826–839.
Zha Y., Gao J. and Ni S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, Int. J. Remote Sens. 24 (3), 2003, 583–594.
Zhang X., Wang C., Li E. and Xu C., 2014. Assessment Model of Eco-environmental Vulnerability Based on Improved Entropy Weight Method, The Scientific World Journal.
Zhang, Y., Yang, Z., & Yu, X., 2006. Measurement and evaluation of interactions in complex urban ecosystem. Ecological Modelling, 196, 77–89.
指導教授 劉說安、李明旭(Yuei-An Liou Ming-Hsu Li) 審核日期 2017-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明