博碩士論文 104626009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:3.21.244.151
姓名 黃群展(Qun-Zhan Huang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 結合長期天氣預報與其準確率應用於水資源水情評估探討:以石門水庫為例
(Water Resource Assessment with Long-Term Weather Forecast and Forecast Accuracy: A Case Study of Taoyuan Area)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 長期天氣展望對於評估水庫水位與地表取水,用以供給民生用水、農業用水、與工業用水相當重要。傳統上水資源管理多使用逕流的氣候統計值(如: 歷史統計的水庫入流量超越機率)。然而在環境變遷的影響下,氣溫與降雨型態改變不易掌握,增加水資源管理困難度。因此,天氣與氣候預報資訊,如中央氣象局 (CWB) 所發布的天氣預報,能給予更明確的未來天氣趨勢,對於水資源管理更顯得重要。然而過往「利用天氣展望的水資源評估模式」卻無法考慮天氣預報的準確率。使決策無法應準確率調整決策。
以民國 100 年乾旱事件與石門水庫水資源系統為研究案例 (案例一) 。本研究首先評估中央氣象局長期天氣預報於解除限水的效用。假設天氣展望與降雨預報的準確率相符的情境下,不同天氣預報準確率對於決策的影響。為了因應乾旱事件,當年三月一日至六月底實施第一階段限水。當長期天氣預報完全準確時,可於三月上旬決定五月中旬時解除限水;季預報命中率下降至 60$\%$ 時,非完美短期氣候預報資訊顯示,在四月中下旬時,可望於五月中旬時解除限水。依實際中央氣象局目前月、季長期天預報能力 (40$\%$-50$\%$) 所假設的降雨預報情境下,仍具有提早解除限水的潛力,在本研究案例中約可提早1個月解除限水。此結果表現出:若天氣展望能反映命中率,隨著預報命中率降低,決策趨於保守。
因此,接著我們基於貝氏定理提出一套方法,將天氣預報準確率納入「利用天氣展望的水資源評估模式」中。並以石門水庫入流量超越機率預報為例 (案例二) ,計算不同命中率下所預報的入流量超越機率曲線 (IEPC) 。結果顯示本方法確實可以獲得反映天氣展望 、與天氣預報準確率的 IEPC 。另外利用預報技術得分 RPSS 來顯示預報準確率的提升對於決策的影響。結果發現,對於部分極端例子(某類別中的過低、過高的事件),完美類別預報反而使決策成效不如以氣候平均值做的決策好。 (案例三) 即使將預測地入流量分布整理成類別預報,由於依某一天氣類別產生的入流量類別不一定一致,仍會產生類似問題。
最後,考慮水庫初始狀態不同對於抗旱決策的影響為例。假設使用不同準確率的天氣預報的天氣展望評估未來水位,並考慮各降雨展望顯示降雨偏高機會較大。結果顯示,若初始水庫庫容充足時,不論是使用高準確率的降雨預報、或是低準確率的降雨預報給予的降雨展望,皆評估未來不易缺水發生。然而,由使用低降雨預報準確率的降雨展望的未來水位評估開始,隨著初始庫容降低,評估結果開始顯示未來有較高的缺水可能性。使利用降雨展望的抗旱決策,於較低降雨預報準確率下,做出更加保守的決策。因此,本方法對於月、季尺度的水資源管理與風險評估有所幫助。
摘要(英) Long-term streamflow prediction is important not only to estimate the water storage of a reservoir but also the surface water intakes which supply people′s livelihood, agriculture, and industry. Climatological forecasts of streamflow (e.q., exceedance probability curve of inflow from the historical record) have been traditionally used for water resource management. However, due to the effect of environmental change, the transform of future weather conditions becomes more abnormal, impending effective management faces a greater challenge. Therefore, a long-term weather outlook issued by such agency as the Central Weather Bureau (CWB), which provides a clearer trend of future weather condition can be beneficial for water resource management. The decision-making process based on the weather outlooks with lower forecast accuracy should produce a more conservative decision. But the past approaches doesn′t.

In this study, I assessed the applicability of CWB long-term weather outlooks for determining ``the decision of lifting water rationing (water restriction)" first. I used Shimen Reservoir and the drought event in 2011, phase 1 water rationing had executed from March 1 to June 30, as our case study (case study I). By Assuming that the weather outlook reflects the weather forecast accuracy, I studied what effect by the accuracy on the decision-making. According to the weather outlooks (seasonal rainfall outlook) with the accuracy of 100$\%$, I can make a decision in the early March, that the normally supply can start from middle May. With the accuracy of seasonal rainfall outlook of 60$\%$, in the middle and late April, the termination of rationing in middle May can be estimated.
The results show that a more conservative decision is produced by the outlook with lower forecast accuracy (if the outlooks reflects the accuracy).

And next, I applied Bayes′ theorem to derive a method for incorporating the long-term weather accuracy into water resource management based on the weather outlook. The prediction of exceedance probability of Shimen Reservoir inflow is used as the case study (case study II). The results show that our approach can predict the inflow exceedance probability curves (IEPCs) reflecting the tercile probabilistic weather outlooks and the weather forecast accuracy. I employed a forecast skill score, RPSS (rank probability skill score) to show how the improvement of the weather forecast affects the decision. I found the potential problems of making the decision with this kind of categorical weather forecast: for some extreme event in a class, perfect rainfall forecast causes the performance of the decision worse than the decision based on the climatological forecast.

(case study II) Even if I arrange the predicted inflow distribution into categorical inflow forecast, the similar problem may arise, due to the rainfall class does not necessarily coincide with the class of the produced inflow.

Last, I considered the decision against water shortage with different the initial water storages of the reservoir. I assumed that the decision maker applies outlooks from different accuracies rainfall forecast.
If the storage if full, all of assessments (based on different weather accuracies) suggest the shortage happens with little chance. Beginning from the assessment based on the outlook from the rainfall forecast with the lowest rainfall forecast accuracy, as the initial storage decreases, the chance of happening water shortage increases. This approach should be useful for the seasonal planning and management of water resource and their risk assessment.
關鍵字(中) ★ 貝氏定理
★ 三類別機率展望
★ 系統動力模式
★ 天氣合成模式
★ GWLF 水文模式
關鍵字(英) ★ Bayes Theorem
★ Tercile Probabilistic Outlook
★ system dynamic modelling
★ Weather Generator
★ General Watershed Loading Functions
論文目次 摘要ii
Abstract iv
Acknowledgment vi
List of Figures xix
List of Tables xxi
List of Acronyms xxii
1 Introduction 1
2 Study Area and CWB Long-term Weather Outlook 7
2.1 Study Area: Shimen Reservoir and the Water Supplying System 7
2.1.1 Hydrological Characteristic of Shimen Reservoir′s Catchment 8
2.1.2 The Water Resource System of Shimen Reservoir 9
2.2 CWB Long-Term Weather Forecast 13
3 Methodology 19
3.1 Introducing the Modelling Structures 19
3.2 Method for Quantify the Performance of Model 21
3.3 Inflow, Temperature and Rainfall Classes in Shimen Reservoir′s Catchment 23
3.4 Weather Generation Model 28
3.5 Generalized Watershed Loading Functions 39
3.5.1 Modelling Structure of GWLF 39
3.5.2 Determining and Validating Parameters of the Inflow Simulating by GWLF 44
3.6 Generating the Inflow Series based on Speciffed Rainfall and Temperature Classes 49
3.7 System Dynamic Model of Water Resource System of Shiem Reservoir 50
3.7.1 System Dynamic Model 51
3.7.2 SDM of the Water Resource System 53
3.8 Incorporating the Weather Forecast Accuracy into the Reservoir
Inflow Prediction 58
4 Case Study I: Releasing Water Rationing Based on the Cross-
Scale Weather Forecast: A Case Study of Taoyuan Area in
2011 63
4.1 Water Shortage in Taoyuan Area in 2011 63
4.2 Scenarios 64
4.2.1 Rationing Ex Ante Decision 66
4.2.2 Weather Outlooks with Different Accuracies 68
4.3 Rolling Forecast of the Reservoir Level 69
4.4 Result and Discussion 70
4.4.1 Assessment with the Historic Inflow 70
4.4.2 "Decision Time" and "Time to Release the Rationing" Assessed with Different Weather Forecast Accuracies 71
4.5 Conclusion 72
5 Case Study II: Estimating the Exceedance Probability of the
Reservoir Inflow Based on the Long-Term Weather Outlooks 79
5.1 IEPC of Each Weather Category 79
5.2 Weather Forecast Scenarios 81
5.3 Results 85
5.4 Discussion 88
5.5 Conclusion 92
6 Case Study III: 3-Class Inflow Prediction Based on the Long-
Term Weather Outlooks 97
6.1 Results 97
6.2 Discussions 98
6.3 Conclusion 100
7 An Example of Water Levels Prediction Based on the Rainfall
Outlook and the Rainfall Forecast Accuracy 103
7.1 Scenario 103
7.2 The Approach of Probability Prediction of the Water Levels 104
7.3 Results and Discussion 105
8 Conclusions and Recommendations for Future Research 107
References 109
A Appendix 115
A.1 User′s guide of the Stanalone Applications: WG, GWLF and SDM 115
A.1.1 Introduction 115
A.1.2 User′s Guide of WaterResource WG 116
A.1.3 User′s Guide of WaterResource GWLF 116
A.1.4 User′s Guide of WaterResource SDM 117
參考文獻 [1] Brumbelow, K. and A. Georgakakos (2001). Agricultural planning and irrigation management: The need for decision support". The Climate Report 1.4, pp. 2-6.
[2] Chen, Meng-Shi (2010). "Validation of CWB Monthly and Seasonal Weather Oulooks". Vol. Proceedings Conference on Weather Analysis and Forecasting 2008. Taipei, Taiwan.
[3] En.wikipedia.org. (2017). Xindian River. Engliss. [Online; accessed 23-Febuar-2017]. url: https://en.wikipedia.org/wiki/Xindian_River.
[4] Fan, Ch"un-Chih (1998). "The impacts of Climate Changes on Groundwater Recharge in Taiwan". Department of Agricultural Engineering, National Taiwan University, Taipei, Taiwan.
[5] Forrester, Jay Wright (1969). Urban dynamics. Vol. 114. MIT press Cambridge.
[6] Haith, D. A. and L. L. Shoenaker (1987). "Generalized watershed loading functions for streamflow nutrients". Water Resources Bulletin 23.3, pp. 471-478.
[7] Haith, D.A., R. Mandel, and R.S. Wu (1992). "GWLF Generalized Watershed Loading Functions Version 2, User′s Manual". PhD thesis. Ithaca, NY: Department of Agricultural and Biological Engineering, Cornell University.
[8] Hamlet, A. F., D. Huppert, and D. P Lettenmaier (2002). "Economic Value of Long-Lead Streamflow Forecasts for Columbia River Hydropower". Journal of Water Resources Planning and Management 128.2, pp. 91-101.
[9] Hamon, W Russell (1961). "Estimating potential evapotranspiration". Journal of the Hydraulics Division 87.3, pp. 107-120.
[10] Han,Wan-rong (2012). "Apply Statistical-Downscaling Climate Forecasts for Estimating Shihmen Reservoir In ow". Master′s thesis. Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Tauyan, Taiwan.
[11] Herr, Henry D and Roman Krzysztofowicz (2015). "Ensemble Bayesian forecasting system Part I: Theory and algorithms". Journal of Hydrology 524, pp. 789-802.
[12] Hersbach, Hans (2000). "Decomposition of the continuous ranked probability score for ensemble prediction systems". Weather and Forecasting 15.5, pp. 559-570.
[13] Hoeting, Jennifer A et al. (1999). "Bayesian model averaging: a tutorial". Statistical science, pp. 382-401.
[14] Huang, Wen-Cheng and Chia-Ching Chou (2008). "Timing of Fallow in Taoyuan Area". Journal of Taiwan Agricultural Engineering 54.2.
[15] Hwu, Jyh-Wen et al. (2008). "The CWB Two-Tier Seasonal Climate Forecast System 2008". Proceedings Conference on Weather Analysis and Forecasting 2008, pp. 253-258.
[16] Kass, Robert E and Adrian E Raftery (1995). "Bayes factors". Journal of the american statistical association 90.430, pp. 773-795.
[17] Krzysztofowicz, Roman (1983). "Why should a forecaster and a decision maker use Bayes theorem". Water Resources Research 19.2, pp. 327-336.
[18] Krzysztofowicz, Roman (1999). "Bayesian theory of probabilistic forecastting via deterministic hydrologic model". Water Resources Research 35.9, pp. 2739-2750.
[19] Kusunose, Yoko and Rezaul Mahmood (2016). "Imperfect forecasts and decision making in agriculture". Agricultural Systems 146, pp. 103-110.
[20] Lall, Upmanu and Ashish Sharma (1996). "A nearest neighbor bootstrap for resampling hydrologic time series". Water Resources Research 32.3, pp. 679-693.
[21] Leamer, Edward E (1978). Speciffcation searches. Wiley.
[22] Lin, Szu-Ta (2009). "Modiffcation of the GWLF Model to Simulate the Feitsui Reservoir Inflow". Master′s thesis.
[23] Makoto, T. (1996). "An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent". Journal of Hydrology 183, pp. 205-225.
[24] Murphy, James (1999). "An evaluation of statistical and dynamical tech-niques for downscaling local climate". Journal of Climate 12.8, pp. 2256-2284.
[25] Northern Region Water Resources Office, Water Resource Agency,, Ministry of Economic Affairs (2011). The records of The major events in 2011. chiness. [Online; accessed 10-August-2016]. url: http://www.wranb.gov.tw/lp.asp?ctNode=895&CtUnit=426&BaseDSD=7&mp=4.
[26] Nowak, Kenneth et al. (2010). "A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow". Water Resources Research 46.8. W08529, n/a-n/a.
[27] Pickering, Nigel B., Jery R. Stedinger, and Douglas A. Haith (1988).
"Weather input for nonpoint-source pollution models". Journal of Irrigation and Drainage Engineering 114.4, pp. 674-690.
[28] Raftery, Adrian E et al. (2005). "Using Bayesian model averaging to calibrate forecast ensembles". Monthly Weather Review 133.5, pp. 1155-1174.
[29] Selker, John S and Douglas A Haith (1990). "Development and testing of single-parameter precipitation distributions". Water Resources Research 26.11, pp. 2733-2740.
[30] Shen, Meng-Yen (2012). "Investigating the Application of Short-Term Climate Outlooks on Land Fallow Decisions against Spring Drought - A Case Study of the Dahan River Water Supply System". Master′s thesis. Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Tauyan, Taiwan.
[31] Soil Conservation Service (1972). National Engineering Handbook, section 4: Hydrology. United States Department of Agriculture, available from U.S. Government Printing Office, Washington, D.C.
[32] Water Resources Agency (2013a). Directions on Gate of Shihmen Reservoir. chiness. [Online; accessed 4-October-2016]. url: http://wralaw.wra.gov.tw/wralawgip/cp.jsp?lawId=8a8a852d201a157001201d74b9ae0deb.
[33] Water Resources Agency (2013b). The Operational Regulations of Shihmen Reservoir. chiness. [Online; accessed 4-October-2016]. url: http://wralaw.wra.gov.tw/wralawgip/cp.jsp?displayLaw=true&lawId=4028868122baccad0122cec4156c00c2.
[34] Wen, Jia-ling (2015). "Information value of different ranges weather forecasts for agriculture water". Master′s thesis. Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Tauyan, Taiwan.
[35] Wu, Ray-Shyan et al. (2015). "Risk Assessment for the Application of Short-term Climate Outlooks on Spring Land Fallow Decisions: A Case Study of the Taoyuan Area". Taiwan Water Conservancy 63.4, pp. 1-11.
[36] Yang, Tao-Chang, Pao-Shan Yu, and Chiang-Chi Chen (2005). "Long-term runoff forecasting by combining hydrological models and meteorological records". Hydrological Processes 19.10, pp. 1967-1981.
[37] Yao, H. and A. Geogakakos (2001). "Assessment of Folsom Lake response to Historical and Potential Future Climate Scenarios: 2. Reservoir Management". Water International 249, pp. 176-196.
[38] Yu, Pao-Shan et al. (2014). "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook". Water Resources Management 28.12, pp. 3905-3920.
指導教授 李明旭(Ming-Hsu Li) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明