博碩士論文 104622013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.222.168.170
姓名 鍾奇軒(Chi-Hsuan Chung)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣場址放大倍率經驗計算
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,台灣許多重大的公共建設都集中在主要都市,造成都市化與人口集中的效應。台灣位於板塊邊界,屬地震活動相當活躍的地區,1999年的集集地震(Mw 7.6)造成2000多人死亡,2016年的美濃地震(Mw 6.5)造成台南市117人死亡與數百棟房屋嚴重損毀,凸顯了大型都市的脆弱性。而地震災害的輕重往往與局部場址效應息息相關,因此研究不同場址條件下的地震波放大特性,在改善地震危害度分析與耐震設計規範中是相當重要的一環。
  本研究使用台灣自由場強震測站(TSMIP)歷年來所觀測到的強地動記錄,資料需經過挑選與處理,台灣強震測站的近地表30公尺內平均剪力波速(Vs30)經過數年調查與研究後也已相當清楚(Kuo et al. 2012; 郭俊翔等人,2017)。在目前強地動記錄與測站場址條件都已具備的情況下,我們即可使用這些資料來分析不同週期震波的放大效應,此分析結果未來將可提供台灣的耐震設計規範修訂之參考,以降低地震所帶來的災害與損失。
  本研究使用台灣「資深地震危害分析委員會議-第三級程序」(SSHAC Level 3)計畫中所使用的強地動資料庫進行分析,我們分別挑選規模六以上的地殼地震(crustal earthquake)和隱沒帶地震(subduction earthquake),利用經過標準化處理的強地動紀錄,對動地加速度峰值、地動速度峰值、地動位移峰值、短中長週期之反應譜進行放大倍率的分析。根據台灣強震測站場址條件研究的結果,本研究採用SSHAC Level 3計畫中的建議,以Vs30 = 760 m/s作為台灣之一般岩盤場址,實際進行分析時則是選取Vs30介於600 ~ 900 m/s範圍內的測站作為參考岩盤站。各獨立地震事件中,在測站有收到資料的前提下,我們使用每個參考站和其周圍固定距離內(視區域採用不同範圍)其他測站的記錄,計算PGA、PGV、PGD和長短週期反應譜的放大率,然後,放大倍率與Vs30的關係式即可經回歸分析而得。對上覆鬆軟土層的測站來說,在地動值太大的情況下,會產生所謂的土壤非線性效應,使地動值減小,對於有實際資料之範圍內,本研究也探討不同震度下的震波放大率。
  由於現今規範中,放大倍率與Vs30的關係為一階梯狀的形式,在邊界值會有Vs30相差不大但放大倍率卻相差很大的情況。本研究透過提供一平滑曲線用以表示放大倍率與Vs30的關係,希望能夠改善此情況。
摘要(英)
Lots of infrastructures are under construction in metropolises in Taiwan in recent years and thus lead to increasement of population density and urbanization in those area. Taiwan island is located in plate boundaries where the high seismicity is caused by active tectonic plates. The Chi-Chi earthquake (Mw 7.6) in 1999 caused a fatality of more than 2000, and the Meinong earthquake (Mw 6.5) in 2016 caused a fatality of 117 in Tainan city as well as damages on hundreds of buildings. The cases imply seismic vulnerability of urban area. The severity of the earthquake hazard is often associated with the site effect, so the study of different site conditions of seismic wave amplification characteristics, in improving the seismic hazard analysis and seismic design is a very important issue.
  This study used the strong motion records observed by the TSMIP network. The site conditions based on Vs30 used in this study were investigated at most stations (Kuo et al. 2012; Kuo et al. 2017). Since strong motion records and site conditions are both available, we are able to use the data to analyze site amplifications of seismic waves at different periods. The result may be a reference for future modification of seismic design codes to decrease potential seismic hazards and losses.
  We adopted the strong motion and site database of the SSHAC Level 3 project in Taiwan. The significant crustal and subduction events of magnitude larger than six are selected for analysis. The amplification factors of PGA, PGV, PGD, and spectra acceleration at 0.3, 1.0, and 3.0 seconds were evaluated. According to the recommendation of SSHAC Level 3 project, the site condition of Vs30 = 760 m/s is considered as the reference rock site. The stations with Vs30 between 600 m/s and 900 m/s were used as the reference rock sites in this study. For each event, we find a reference rock site and a target site within a certain distance (regional dependent) to calculate site amplifications of ground motions. Relationships of site amplification factors and Vs30 are therefore derived by regression analysis. Soil nonlinearity (decrease of amplifications) has to be considered at soft soil sites during a strong shaking. We also discuss amplification factors in terms of different intensities if data is available.
  In the current code, the relationship between amplification factor and Vs30 is a ladder-like form. Similar Vs30 values near the site classification boundaries may have quite different amplification factors. This study intends to improve this problem by providing a smooth curve to represent the relationship between amplification factor and Vs30.
關鍵字(中) ★ 場址效應
★ 台灣
★ 強震
★ 經驗回歸
關鍵字(英)
論文目次
摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 本文內容 5
第二章 研究區域地質背景概述及強震資料庫 8
2-1 台灣地質概述 8
2-2 台灣強震站場址類型 11
2-3 強地動資料庫 12
2-4 國內相關規範概述 15
第三章 研究方法 20
3-1 放大倍率之介紹與原理 20
3-2 地震事件篩選及分類 21
3-3 岩盤測站與土壤測站篩選規則 23
第四章 研究結果之討論 32
4-1放大倍率的非線性現象 32
4-2 震源類型與放大倍率的關係 35
4-3與相關研究之比較 36
4-4與台灣現行耐震設計規範之比較 40
4-5 測站間距與放大倍率的關係 42
第五章 總結 61
5-1 結論 61
5-2 未來展望 62
參考文獻 63
附錄A 66
附錄B 103
參考文獻

1. Beresnev, I. A., Wen, K. L. and Yeh, Y. T. (1995a). Nonlinear soil amplification: Its corroboration in Taiwan. Bulletin of the Seismological Society of America, 85, pp. 496-515.
2. Beresnev, I. A., Wen, K. L. and Yeh, Y. T. (1995b). Seismological evidence for nonlinear plastic ground behavior during large earthquakes. Soil Dynamics and Earthquake Engineering, 14, pp. 103-114.
3. Boore, D. M., L. Seekins, and W. B. Joyner (1989). Peak acceleration from the 17 October 1989 Loma Prieta earthquake. Seismological Research Letter, 60(4), pp. 151-166.
4. Borcherdt R. D. (1970). Effect of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), pp. 29-61.
5. Borcherdt R. D. and G. Glassmoyer (1994). Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region and their implications for site-specific building-code provisions. Geological Survey Professional Paper 1551-A, pp. 77-108.
6. Borcherdt, R. D. (2002). Empirical evidence for acceleration-dependent Amplification factors. Bulletin of the Seismological Society of America, 92(2), pp. 761-782.
7. Building Seismic Safety Council (2001). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, 2000 Edition, Part 1- Provisions, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, D.C.
8. Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale. Journal of Geophysical Research 84, pp. 2348-2350.
9. Hsu, L. M. (1984). Pleistocene formation with dissolved-in-water type gas in the Chianan plain, Taiwan, Petrol. Geol. Taiwan, 20, pp.199-213.
10. Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M., Lin, C. M. and Chen, C. T. (2011). Evaluating empirical regression equations for Vs and estimating Vs30 in Northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31(3), pp. 431-439.
11. Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M. and Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129(130), pp. 68-75.
12. Kuo, C. H., Chen, C. T., Lin, C. M., Wen, K. L., Huang, J. Y. and Chang, S. C. (2016). S-wave velocity structure and site effect parameters derived from microtremor arrays in the western plain of Taiwan. Journal of Asian Earth Sciences, 128, pp. 27-41.
13. Liu, K. S. and Tsai, Y. B. (2015). A Refined Vs30 Map for Taiwan Based on Ground Motion Attenuation Relationships. Terrestrial Atmospheric and Oceanic Sciences, 26(6), pp. 631-653.
14. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute. 30, pp. 25-33.
15. National Center for Research on Earthquake Engineering (NCREE) (2018). GMC Technical Report of Taiwan SSHAC Level 3 Project, June 2018. ( in progress )
16. Stewart J. P., Andrew H. Liu, and Yoojoong Choi, (2003). Amplification Factors for Spectral Acceleration in Tectonically Active Regions. Bulletin of the Seismological Society of America, 93(1), pp. 332–352.
17. Triantafyllidis, P., P. M. Hatzidimitriou, N. Theodulidis, P. Suhadolc, C. Papazachos, D. Raptakis, and K. Lontzetidis (1999). Site Effects in the city of Thessaloniki (Greece) estimated from acceleration data and 1D local soil profiles. Bulletin of the Seismological Society of America, 89, pp. 521-537.
18. Wen, K. L., Beresnev, I. A., and Yeh, Y. T. (1994). Nonlinear soil amplification inferred from downhole strong seismic motion data. Geophysical Research Letters, 21(24), pp. 2625-2628.
19. Wen, K. L., Beresnev, I. A., and Yeh, Y. T. (1995). Investigation of non-linear site amplification at two downhole strong ground motion arrays in Taiwan. Earthquake Engineering and Structural Dynamics, 24, pp. 313-324.
20. 王乾盈、孫志財,1999。台北盆地震測地層解釋,經濟部中央地質調查所特刊,第11號,273-292。
21. 吳東錦,1990。台南台地台南層之碳十四定年研究及其在新構造運動上之意義,國立台灣大學地質研究所碩士論文。
22. 何春蓀,1971。台灣之第三紀盆地,台灣省地質調查彙刊,23,1-52。
23. 何春蓀,1986。台灣地質概論-台灣地質圖說明書(增訂第二版),經濟部中央地質調查所,164。
24. 建築物耐震設計規範及解說部分規定修正規定,2011。內政部營建署,第017卷,第015期,內政篇。
25. 郭俊翔、溫國樑、謝宏灝、林哲民、張道明,2011。近地表剪力波速性質之研究,國家地震工程研究中心,報告編號NCREE-11-022。
26. 郭俊翔、林哲民、章順強、溫國樑、謝宏灝,2017。台灣強震測站場址資料庫,國家地震工程研究中心,報告編號NCREE-17-004。
27. 詹新甫,1976。宜蘭地區第三紀之地質,礦業技術,第14卷,第7期,252-257。
28. 鄭世楠、葉永田、徐明同、張建興、辛在勤,台灣十大災害地震圖集, 交通部中央氣象局地震測報中心,1999。
29. 盧建中,2006。台灣西南平原末次冰期以來之地層及構造運動,國立中央大學應用地質研究所碩士論文。
指導教授 溫國樑、郭俊翔 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明