參考文獻 |
[ASM1] J. R. Davis, ASM Specialty Handbook : Aluminum and
Aluminum Alloys, ASM International, p. 3 p. 5, 1993.
[ASM2] J. R. Davis, ASM Specialty Handbook: Aluminum and
Aluminum Alloys, ASM International, p. 292 p. 316, 1993.
[ASM3] J. R. Davis, ASM Specialty Handbook: Aluminum and
Aluminum Alloys, ASM International, p. 299 p. 302, 1993.
[ASM4] J. R. Davis, ASM Specialty Handbook: Aluminum and
Aluminum Alloys, ASM International, p. 59 p. 62, 1993.
[ASM5]Hatch, J. E. , Alumina, Properties and Physical Metall, ASM, p.
153, 1984.
[ASTM1]Standard Test Methods for Determining Hardenability of Steel,
A255 10 (Reapproved 2014).
[ASTM2] Standard Test Methods for Determining Average Grain Size,
E112 13.
[LEE1]李勝隆, 熱處理-金屬材料原理與應用,1st Edition, p. 339 p.
341.
[LEE2]李勝隆, 熱處理-金屬材料原理與應用,1st Edition, p. 353.
[LEE3]李勝隆, 熱處理-金屬材料原理與應用,1st Edition, p. 343 p.
345.
[LEE4]D. H. Lee, S. W. Nam, Role of manganesedispersoid in the
fracture toughness enhancement of AlZnMg(Mn) alloys,
Metals and Materials, Vol.1, Issue 1, p.71 p.76, 1995.
[REE1]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 515 p. 516.
[REE2]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 478 p. 481.
[REE3]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 511 p. 512.
[REE4]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 463 p. 470.
[REE5]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 141.
52
[REE6]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 516 p. 518.
[REE7]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 615.
[HUM1]F. J. Humphrey, M. Hatherly, Recrystallization and Related
Annealing Phenomena, 2nd Edition, p. 48 p. 50.
[HUM2]F. J. Humphrey, M. Hatherly, Recrystallization and Related
Annealing Phenomena, 2nd Edition, p. 50 p. 65.
[HUM3]F. J. Humphrey, M. Hatherly, Recrystallization and Related
Annealing Phenomena, 2nd Edition, p. 293 p. 319.
[LIM1]S.T. Lim, S.J. Yun, S.W. Nam, Improved quench sensitivity in
modified aluminum alloy 7175 for thick forging applications Materials,
Science and Engineering A, Vol. 371, p. 82 p. 90, 2004.
[LIM2]S.T. Lim, I.S. Eun, S.W. Nam, in press.
[LIV]R. J. Livak, J.M. Papazian, Effects of copper on precipitation and
quench sensitivity of AlZnMg alloys, Scripta Metallurgica, Vol. 18,
p. 483 p. 488, 1984.
[BRY]A.J. Bryant:The Effect of Composition upon the
QuenchSensitivity of Some AlZnMg Alloys, Journal of the Institute
of Metals, Vol. 94, p. 94 p. 98, 1966.
[COR]C. GarciaCordovilla, E. Louis, A differential scanning
calorimetry investigation of the effects of zinc and copper on solid state
reactions in AlZnMgCu alloys, Materials Science and Engineering A,
Vol. 132, p. 135 p. 141, 1991.
[MOH]A.M.A. Mohamed, F.H. Samuel, Heat Treatment – Conventional
and Novel Applications, 1st Edition, p. 229 p. 246, 2012.
[SMI]W. F. Smith, J. Hashemi, Foundation of Materials Science and
Engineering, McGraw Hill, 4th Edition, p. 415, 2006.
[PEN]G.S. Peng, K. H. Chen, S. Y. Chen, H. C. Fang, Influence of
repetitiousRRA treatment on the strength and SCC resistance of
AlZnMgCu alloy, Materials Science and Engineering A, Vol. 528,
p .4014 p. 4018, 2011.
[ZHA]M. Zhang, T. Liu, C. He, Ji. Ding, E. Liu, C. Shi, J. Li, N. Zhao,
Evolution of microstructure and properties of AlZnMgCuScZr
alloy during aging treatment, Journal of Alloys and Compounds ,
Vol.658, p. 946 p. 951, 2016.
[SPE]Speidel M.O. and M.V. Hyatt, Advances in corrosion science and
technology, Plenum Press, NY, Vol. l, Issue 2, p. 115 p. 127, 1972.
53
[LIU1]Z. Liu and M. Asta, In preparation (2006).
[LIU2]S. D. Liu, W. J. Liu, Y. Zhang, X. M. Zhang, Y.L. Deng, Effect of
microstructure on the quench sensitivity of AlZnMgCu alloys, Journal of
Alloys and Compounds, Vol. 507, p. 53 p. 61, 2010.
[LIU3]S. D. Liu, Q. M. Zhong, Y. Zhang, W. J. Liu, X. M. Zhang, Y. L.
Deng, Investigation of quench sensitivity of high strength Al–Zn–Mg–Cu
alloys by time–temperatureproperties diagrams, Materials and Design,
Vol. 31, p. 3116 p. 3120, 2010.
[LIU4] S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You, Influence of aging
on quench sensitivity effect of 7055 aluminum alloy, Materials
Characterization, Vol. 59, p. 53 p. 60, 2008.
[LIU5] J. Liu, P. Yao, N. Q. Zhao, C. S. Shi, H.J Li, X. Li , D. S. Xi, S.
Yang, Effect of minor Sc and Zr on recrystallization behavior and
mechanical properties of novel AlZnMgCu alloys, Journal of Alloys
and Compounds, Vol. 657, 717–725, 2016.
[KNI1]K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, D. N.
Seidman, Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–
0.1Zr (at.%) alloys during isochronal aging, Acta Materialia, Vol. 58, p.
5184 p. 5195, 2010.
[KNI2]K. E. Knipling, D. N. Seidma, D. C. Dunand, Ambient and
hightemperature mechanical properties of isochronally aged Al–0.06Sc,
Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys, Acta Materialia, Vol. 59,
p. 943 p. 954, 2011.
[KNI3]K. E. Knipling, D. C. Dunand, D. N. Seidma, Precipitation
evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–
425 °C, Acta Materialia, Vol. 56, p. 114 p. 127, 2008.
[KNI4] K. E. Knipling, Development of a Nanoscale Precipitation-
Strengthened Creep-Resistant Aluminum Alloy Containing
Trialuminide Precipitates, p. 82, 2006.
[LI1]Y. J. Li, A. M. F. Muggerud, A. Olsen, T. Furu, Precipitation of
partially coherent αAl(Mn,Fe)Si dispersoids and their strengthening
effect in AA 3003 alloy, Acta Materialia, Vol. 60, p. 1004 p. 1014,
2012.
LI2H. Y. Li, C. T. Zeng, M.S. Han, J. J. Liu, X.C. Lu,
Timetemperatureproperty curves for quench sensitivity of 6063
aluminum alloy, Transactions of Nonferrous Metals Society of China,
Vol. 23, p. 38 p. 45, 2013.
54
[LEF]W. Lefebvre, N. Masquelier, J. Houard, R. Patte and H. Zapolsky,
Tracking the path of dislocations across ordered Al3Zr nanoprecipitates
in three dimensions, Scripta Materialia, Vol. 70, p. 43 p. 46, 2014.
[HIR]S. Hirosawa, T. Sato, A. Kamio, Effects of Mg addition on the
kinetics of lowtemperature precipitation in AlLiCuAgZr alloys
Materials Science and Engineering A, Vol. 242, p. 195 p. 201, 1998.
[OZB]S. Ö zbilen, H. M. Flower, Zirconiumvacancy binding and its
influence on S′precipitation in an AlCuMg alloy, Acta Metallurgica,
Vol. 37, p. 2993 p. 3000, 1989.
[MUK1]A. K. Mukhopadhy, Q. B. Yang, S. R. Singh, The influence of
zirconium on the early stages of aging of a ternary A1ZnMg alloy,
Acta Metallurgica et Materialia Vol. 42, No. 9, p. 3082 p. 3091, 1994.
[MUK2]A. K. Mukhopadhyay, G. J. Shiflet and E. A. Starke, Jr., Role of
vacancies on the precipitation process in Zr modified aluminum based
alloys, Acta Metallurgica et Materialia, Vol. 24, p. 307 p. 312, 1990.
[WU1]L. M. Wu, M. Seyring, M. Rettenmayr, W. H. Wang,
Characterization of precipitate evolution in an artificially aged
AlZnMgScZr alloy, Materials Science and Engineering A , Vol. 527,
p. 1068 p. 1073, 2010.
[WU2]L. M. Wu, W. H. Wang, Y. F. Hsu, S. Trong, Effects of
homogenization treatment on recrystallization behavior and dispersoid
distribution in an AlZnMgScZr alloy, Journal of Alloys and
Compounds, Vol. 456, p. 163 p. 169, 2008.
[POR1]D. A. Porter, K. E. Easterling, Phase Transformations in Metals
and Alloys, 1st Edition, p. 303 p. 304.
[POR2]D. A. Porter, K. E. Easterling, Phase Transformations in Metals
and Alloys, 1st Edition, p. 190 p. 200.
[POR3]D. A. Porter, K. E. Easterling, Phase Transformations in Metals
and Alloys, 1st Edition, p. 261 p. 274.
TANJ. G. Tang, H. Chen, X. M. Zhang, S. D. Liu, W. J. Liu, OUYANG
Hui, H. P. Li, Influence of quenchinduced precipitation on aging
behavior of AlZnMgCu alloy, Transactions of Nonferrous Metals
Society of China, Vol. 22, p. 1255 p. 1263, 2012.
JIAK. D. Jiang, L. Chen, Y. Y. Zhang, Y. L. Deng, Influence of
subgrain boundaries on quenching process of an AlZnMgCu alloy,
Transactions of Nonferrous Metals Society of China, Vol. 24, p. 2117 p.
2121, 2014.
Ç ETC. Ç etinarslan, Effect of cold plastic deformation on electrical |