博碩士論文 104329007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.12.164.238
姓名 黎諺燊(Yan-Shen Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
(Effect of Minor Zr and Cold Working on Quenching Sensitivity of Al-4.7Zn-1.6Mg Alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響
★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由微結構觀察、DSC(Differential Scanning Calorimetry)量測與
端面淬火測試(Jominy End Quench Test)等,探討微量Zr 與冷加工對
Al4.7Zn1.6Mg 合金淬火敏感性之影響。結果顯示,Zr 元素可有效
抑制淬火敏感性的上升;冷加工則使Al4.6Zn1.6Mg(0.1Zr)合金
淬火敏感性上升。Al4.6Zn1.6Mg0.1Zr 合金經過冷加工後,因再
結晶驅動力較大,新晶粒中的Al3Zr 相失去整合性成為一異質成核
點,故淬火敏感性較熱加工之Al4.7Zn1.6Mg0.1Zr 合金大。長時
間的固溶處理對熱加工之Al4.7Zn1.6Mg 合金無較大影響,然而可
使冷加工之Al4.7Zn1.6Mg 合金的晶粒成長,減少晶界,使其淬火
敏感性稍微下降;長時間固溶處理使Al4.7Zn1.6Mg0.1Zr 合金之
再結晶比例增加,穩定態相異質析出量上升,然熱加工之
Al4.7Zn1.6Mg0.1Zr 合金的穩定態相異質析出量對端面淬火試
驗空冷端之硬度值影響較不明顯,冷加工之Al4.7Zn1.6Mg0.1Zr
合金的穩定態相異質析出量對端面淬火試驗空冷端之硬度值影響較
大。
摘要(英) We investigate the effect of minor Zr and cold working on
quenching sensitivity of Al4.7Zn1.6Mg alloy by microstructure
observing, DSC measurement and Jominy End Quench Test, and so on.
The result shows that Zr element can inhibit quenching sensitivity
significantly, while cold working make quenching sensitivity of
Al4.6Zn1.6Mg(0.1Zr) obviously. Recrystallization motivation of cold
worked Al4.6Zn1.6Mg0.1Zr alloy is larger than hot extruded one and
there are many low coherency Al3Zr particles as heterogeneous
nucleation sites in the new grains, so the quenching sensitivity of cold
worked alloy is more than hot worked one. Longterm solution treatment
has no certain impact on hot worked Al4.6Zn1.6Mg alloy, but make
average grain size of cold worked Al4.6Zn1.6Mg alloy growth, reduce
the grain boundary area and lower quenching sensitivity of cold worked
Al4.6Zn1.6Mg alloy slightly. Longterm solution treatment enhance
recrystallization fraction of Al4.6Zn1.6Mg0.1Zr alloy, and increase
the amount of precipitation of stable  phase. The amount of precipitation
of stable  phase influence hardness ineffectively in the air cooling end of
Jominy End Quench test tube of hot worked Al4.6Zn1.6Mg0.1Zr
alloy, but effectively for cold worked Al4.6Zn1.6Mg0.1Zr alloy.
關鍵字(中) ★ Al-4.7Zn-1.6Mg合金
★ 冷加工
★ 固溶處理
★ 淬火敏感性
關鍵字(英) ★ Al-4.7Zn-1.6Mg alloy
★ cold working
★ solution treatment
★ quenching sensitivity
論文目次 中文摘要.....................................................................................................i
英文摘要....................................................................................................ii
謝 誌...................................................................................................iii
總 目 錄...................................................................................................iv
表 目 錄...................................................................................................vi
圖 目 錄..................................................................................................vii
一、 前言與文獻回顧..............................................................................1
1.1 7000 系鋁合金簡介...............................................................1
1.2 析出硬化機制........................................................................6
1.3 淬火敏感性............................................................................8
1.4 均質成核與異質成核............................................................9
1.5 合金元素添加對於7000 系鋁合金之影響........................13
1.5.1 鋯對7000 系鋁合金再結晶之影響..........................13
1.5.2 鋯對7000 系鋁合金機械性質之影響......................15
1.5.3 鋯對7000 系鋁合金淬火敏感性之影響..................16
1.5.4 銅對7000 系鋁合金淬火敏感性之影響..................18
1.5.5 鉻對7000 系鋁合金淬火敏感性之影響..................19
1.6 熱處理對淬火敏感性之影響..............................................19

1.7 實驗目的與規劃..................................................................20
二、 實驗方法........................................................................................21
2.1 合金熔配、熱處理與熱/冷加工.......................................21
2.2 微結構觀察.........................................................................24
2.2.1 光學顯微鏡(OM)......................................................24
2.2.2 導電度量測..............................................................25
2.2.3 穿透式電子顯微鏡(TEM).......................................25
2.2.4 示差掃描熱量計(DSC)...........................................25
2.3 機械性質測試.....................................................................25
2.3.1 拉伸試驗..................................................................26
三、 結果與討論....................................................................................27
3.1 微結構分析.........................................................................27
3.1.1 晶粒結構與析出相觀察..........................................27
3.1.2 導電度量測..............................................................39
3.1.3 DSC 量測...............................................................42
3.2 機械性質測試.....................................................................47
3.2.1 端面淬火試驗........................................................47
四、 結論................................................................................................50
五、 參考文獻........................................................................................51
參考文獻 [ASM1] J. R. Davis, ASM Specialty Handbook : Aluminum and
Aluminum Alloys, ASM International, p. 3 p. 5, 1993.
[ASM2] J. R. Davis, ASM Specialty Handbook: Aluminum and
Aluminum Alloys, ASM International, p. 292 p. 316, 1993.
[ASM3] J. R. Davis, ASM Specialty Handbook: Aluminum and
Aluminum Alloys, ASM International, p. 299 p. 302, 1993.
[ASM4] J. R. Davis, ASM Specialty Handbook: Aluminum and
Aluminum Alloys, ASM International, p. 59 p. 62, 1993.
[ASM5]Hatch, J. E. , Alumina, Properties and Physical Metall, ASM, p.
153, 1984.
[ASTM1]Standard Test Methods for Determining Hardenability of Steel,
A255 10 (Reapproved 2014).
[ASTM2] Standard Test Methods for Determining Average Grain Size,
E112 13.
[LEE1]李勝隆, 熱處理-金屬材料原理與應用,1st Edition, p. 339 p.
341.
[LEE2]李勝隆, 熱處理-金屬材料原理與應用,1st Edition, p. 353.
[LEE3]李勝隆, 熱處理-金屬材料原理與應用,1st Edition, p. 343 p.
345.
[LEE4]D. H. Lee, S. W. Nam, Role of manganesedispersoid in the
fracture toughness enhancement of AlZnMg(Mn) alloys,
Metals and Materials, Vol.1, Issue 1, p.71 p.76, 1995.
[REE1]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 515 p. 516.
[REE2]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 478 p. 481.
[REE3]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 511 p. 512.
[REE4]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 463 p. 470.
[REE5]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 141.
52
[REE6]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 516  p. 518.
[REE7]R. E. ReedHill, R. Abbaschian: Physical Metallurgy
Principles, 4th Edition, p. 615.
[HUM1]F. J. Humphrey, M. Hatherly, Recrystallization and Related
Annealing Phenomena, 2nd Edition, p. 48 p. 50.
[HUM2]F. J. Humphrey, M. Hatherly, Recrystallization and Related
Annealing Phenomena, 2nd Edition, p. 50 p. 65.
[HUM3]F. J. Humphrey, M. Hatherly, Recrystallization and Related
Annealing Phenomena, 2nd Edition, p. 293 p. 319.
[LIM1]S.T. Lim, S.J. Yun, S.W. Nam, Improved quench sensitivity in
modified aluminum alloy 7175 for thick forging applications Materials,
Science and Engineering A, Vol. 371, p. 82 p. 90, 2004.
[LIM2]S.T. Lim, I.S. Eun, S.W. Nam, in press.
[LIV]R. J. Livak, J.M. Papazian, Effects of copper on precipitation and
quench sensitivity of AlZnMg alloys, Scripta Metallurgica, Vol. 18,
p. 483 p. 488, 1984.
[BRY]A.J. Bryant:The Effect of Composition upon the
QuenchSensitivity of Some AlZnMg Alloys, Journal of the Institute
of Metals, Vol. 94, p. 94 p. 98, 1966.
[COR]C. GarciaCordovilla, E. Louis, A differential scanning
calorimetry investigation of the effects of zinc and copper on solid state
reactions in AlZnMgCu alloys, Materials Science and Engineering A,
Vol. 132, p. 135 p. 141, 1991.
[MOH]A.M.A. Mohamed, F.H. Samuel, Heat Treatment – Conventional
and Novel Applications, 1st Edition, p. 229 p. 246, 2012.
[SMI]W. F. Smith, J. Hashemi, Foundation of Materials Science and
Engineering, McGraw Hill, 4th Edition, p. 415, 2006.
[PEN]G.S. Peng, K. H. Chen, S. Y. Chen, H. C. Fang, Influence of
repetitiousRRA treatment on the strength and SCC resistance of
AlZnMgCu alloy, Materials Science and Engineering A, Vol. 528,
p .4014 p. 4018, 2011.
[ZHA]M. Zhang, T. Liu, C. He, Ji. Ding, E. Liu, C. Shi, J. Li, N. Zhao,
Evolution of microstructure and properties of AlZnMgCuScZr
alloy during aging treatment, Journal of Alloys and Compounds ,
Vol.658, p. 946 p. 951, 2016.
[SPE]Speidel M.O. and M.V. Hyatt, Advances in corrosion science and
technology, Plenum Press, NY, Vol. l, Issue 2, p. 115 p. 127, 1972.
53
[LIU1]Z. Liu and M. Asta, In preparation (2006).
[LIU2]S. D. Liu, W. J. Liu, Y. Zhang, X. M. Zhang, Y.L. Deng, Effect of
microstructure on the quench sensitivity of AlZnMgCu alloys, Journal of
Alloys and Compounds, Vol. 507, p. 53 p. 61, 2010.
[LIU3]S. D. Liu, Q. M. Zhong, Y. Zhang, W. J. Liu, X. M. Zhang, Y. L.
Deng, Investigation of quench sensitivity of high strength Al–Zn–Mg–Cu
alloys by time–temperatureproperties diagrams, Materials and Design,
Vol. 31, p. 3116 p. 3120, 2010.
[LIU4] S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You, Influence of aging
on quench sensitivity effect of 7055 aluminum alloy, Materials
Characterization, Vol. 59, p. 53 p. 60, 2008.
[LIU5] J. Liu, P. Yao, N. Q. Zhao, C. S. Shi, H.J Li, X. Li , D. S. Xi, S.
Yang, Effect of minor Sc and Zr on recrystallization behavior and
mechanical properties of novel AlZnMgCu alloys, Journal of Alloys
and Compounds, Vol. 657, 717–725, 2016.
[KNI1]K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, D. N.
Seidman, Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–
0.1Zr (at.%) alloys during isochronal aging, Acta Materialia, Vol. 58, p.
5184 p. 5195, 2010.
[KNI2]K. E. Knipling, D. N. Seidma, D. C. Dunand, Ambient and
hightemperature mechanical properties of isochronally aged Al–0.06Sc,
Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys, Acta Materialia, Vol. 59,
p. 943 p. 954, 2011.
[KNI3]K. E. Knipling, D. C. Dunand, D. N. Seidma, Precipitation
evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–
425 °C, Acta Materialia, Vol. 56, p. 114 p. 127, 2008.
[KNI4] K. E. Knipling, Development of a Nanoscale Precipitation-
Strengthened Creep-Resistant Aluminum Alloy Containing
Trialuminide Precipitates, p. 82, 2006.
[LI1]Y. J. Li, A. M. F. Muggerud, A. Olsen, T. Furu, Precipitation of
partially coherent αAl(Mn,Fe)Si dispersoids and their strengthening
effect in AA 3003 alloy, Acta Materialia, Vol. 60, p. 1004 p. 1014,
2012.
LI2H. Y. Li, C. T. Zeng, M.S. Han, J. J. Liu, X.C. Lu,
Timetemperatureproperty curves for quench sensitivity of 6063
aluminum alloy, Transactions of Nonferrous Metals Society of China,
Vol. 23, p. 38 p. 45, 2013.
54
[LEF]W. Lefebvre, N. Masquelier, J. Houard, R. Patte and H. Zapolsky,
Tracking the path of dislocations across ordered Al3Zr nanoprecipitates
in three dimensions, Scripta Materialia, Vol. 70, p. 43 p. 46, 2014.
[HIR]S. Hirosawa, T. Sato, A. Kamio, Effects of Mg addition on the
kinetics of lowtemperature precipitation in AlLiCuAgZr alloys
Materials Science and Engineering A, Vol. 242, p. 195 p. 201, 1998.
[OZB]S. Ö zbilen, H. M. Flower, Zirconiumvacancy binding and its
influence on S′precipitation in an AlCuMg alloy, Acta Metallurgica,
Vol. 37, p. 2993 p. 3000, 1989.
[MUK1]A. K. Mukhopadhy, Q. B. Yang, S. R. Singh, The influence of
zirconium on the early stages of aging of a ternary A1ZnMg alloy,
Acta Metallurgica et Materialia Vol. 42, No. 9, p. 3082 p. 3091, 1994.
[MUK2]A. K. Mukhopadhyay, G. J. Shiflet and E. A. Starke, Jr., Role of
vacancies on the precipitation process in Zr modified aluminum based
alloys, Acta Metallurgica et Materialia, Vol. 24, p. 307 p. 312, 1990.
[WU1]L. M. Wu, M. Seyring, M. Rettenmayr, W. H. Wang,
Characterization of precipitate evolution in an artificially aged
AlZnMgScZr alloy, Materials Science and Engineering A , Vol. 527,
p. 1068 p. 1073, 2010.
[WU2]L. M. Wu, W. H. Wang, Y. F. Hsu, S. Trong, Effects of
homogenization treatment on recrystallization behavior and dispersoid
distribution in an AlZnMgScZr alloy, Journal of Alloys and
Compounds, Vol. 456, p. 163 p. 169, 2008.
[POR1]D. A. Porter, K. E. Easterling, Phase Transformations in Metals
and Alloys, 1st Edition, p. 303 p. 304.
[POR2]D. A. Porter, K. E. Easterling, Phase Transformations in Metals
and Alloys, 1st Edition, p. 190 p. 200.
[POR3]D. A. Porter, K. E. Easterling, Phase Transformations in Metals
and Alloys, 1st Edition, p. 261 p. 274.
TANJ. G. Tang, H. Chen, X. M. Zhang, S. D. Liu, W. J. Liu, OUYANG
Hui, H. P. Li, Influence of quenchinduced precipitation on aging
behavior of AlZnMgCu alloy, Transactions of Nonferrous Metals
Society of China, Vol. 22, p. 1255 p. 1263, 2012.
JIAK. D. Jiang, L. Chen, Y. Y. Zhang, Y. L. Deng, Influence of
subgrain boundaries on quenching process of an AlZnMgCu alloy,
Transactions of Nonferrous Metals Society of China, Vol. 24, p. 2117 p.
2121, 2014.
Ç ETC. Ç etinarslan, Effect of cold plastic deformation on electrical
指導教授 李勝隆 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明