摘要(英) |
In this work, we measured the photoluminescence spectra and Raman spectra to analyze the optical properties and phonon behaviors of Zn1-xCdxO (x = 0%, 9%, 14%, 17%, 20%) and Zn1-xMgxO (x = 0%, 3.8%, 11.5%, 13.2%).
Zinc oxide (ZnO) with different content Mg or Cd incorporation is one of methods to tune bandgap and emission wavelength, but also one of reasons to make PL signal broadening. From temperature dependent PL spectra, the localized states in Zn1-xCdxO and Zn1-xMgxO were observed and there will be an anomalous blue shift in its temperature dependent PL peak. Then, Eliseev’s model can be used to realize the dispersive energy of the localized state.
From our Raman spectra, by Cd (Mg) incorporation, LO phonon signal peak position is red-shifting (blue-shifting) and phonon signal peak shape is broadening and becoming asymmetric. This is described that the disorder of lattice vibration and there exists the confinement effect which leads to a relaxation of the q=0 selection rule. In this essay, we compare experimental value of Raman peak shift and asymmetric Raman peak shape with theoretical value calculated by MREI model and spatial correlation model. |
參考文獻 |
[1] T.Makino et al., “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films”, J. Appl. Phys. 78, 1237 (2001)
[2] C.S.Yang et al., “Optical properties of the ZnSe1-xTex epilayers grown by molecular beam epitaxy”, J. Appl. Phys. 83, 2555 (1998)
[3] P.G.Eliseev et al., “Blue temperature-induced shift and band-tail emission in InGaN-based light sources”, Appl. Phys. Lett. 71, 569 (1997)
[4] P.G.Eliseev., “The red spectral shift in partially disordered semiconductors, J. Appl. Phys. 93, 5404 (2003)
[5] 李芳葦,“高銦氮化銦鎵薄膜之成長與特性”,國立交通大學 電子物理所 碩士論文(2010)
[6] 郭文泉,“氮化銦鎵/氮化鎵多層量子井之光學特性研究”,國立中央大學 物理所 碩士論文(1999)
[7] Max Born and Kun Huang., “Dynamical Theory of Crystal Lattices”, Oxford Classic Texts in the Physical Sciences, Clarendon Press,(1954)
[8] T.Hanada “Oxide and Nitride Semiconductors Processing, Properties, and Applications”, p.1-p.19, Springer (2009)
[9] Kenji Yamamoto et al., "Structural and optical properties of Zn(Mg,Cd)O alloy films grown by remote-plasma-enhanced MOCVD", J. Cryst. Growth 312 1703–1708 (2010)
[10] 劉漢鈞,“氮化銦奈米柱之光學性質研究”,國立中央大學 物理所 碩士論文(2006)
[11] I.F.Chang et al., “Application of a Modified Random-Element-Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals”, Phys. Rev. 172, 924 (1966)
[12] Kouji Hayashi et al, “Raman Scattering in ZnSxSe1-x Alloys”, Jpn. J. Appl. Phys 30, Part 1, Number 3,501-505 (1991)
[13] H.Richter et al., “The One Phonon Raman Spectrum in Microcrystalline Silicon”, Solid State Commun. 39, 625 (1981)
[14] 黃馨毅,“氧化鎘鋅薄膜光學性質分析,國立中央大學” 物理所 碩士論文(2013)
[15] 葉蓉霏,“以電漿輔助式分子束磊晶法成長氧化鎂鋅磊晶薄膜與特性研究”,國立交通大學 電子物理所 碩士論文(2012)
[16] V.A. Coleman and C. Jagadish, “Zinc Oxide Bulk, Thin Films and Nanostructures Processing, Properties, and Applications”, Ch1, Elsevier (2006)
[17] T.Y.Wu et al., “Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy”, Solid State Commun. 237-238, 1-4 (2016)
[18] E.F.Schubert et al., “Alloy broadening in photoluminescence spectra of Al1-xGaxAs”, Phys. Rev. B 30, 813 (1984)
[19] D.W.Hamby et al., “Temperature dependent exciton photoluminescence of bulk ZnO”, J. Appl. Phys. 93, 3214 (2003)
[20] K.F.Chien et al., “Thermal-activated carrier transfer in ZnCdO thin film grown by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth 378 208–211 (2013)
[21] 許維綸,“以電漿輔助式分子束磊晶成長之氧化鎘鋅”,國立交通大學 電子物理所 碩士論文(2012)
[22] Hadis Morkoc and Umit Ozgur “Zinc Oxide: Fundamentals, Materials and Device Technology”, Ch1, Wiley, (2009)
[23] R.Oliva et al., “High-pressure Raman scattering of CdO thin films grown by metal-organic vapor phase epitaxy”, J. Appl. Phys. 113, 053514 (2013)
[24] O. Madelung et al., II-VI and I-VII Compounds; Semimagnetic Compounds “Cadmium oxide (CdO) optical and photoelectric properties, dielectric constants, plasmon energy”, Springer (1965)
[25] J.D.Ye et al., “Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1-xMgxO nanocrystals”, Appl. Phys. Lett. 91, 091901 (2007) |