參考文獻 |
[1] Grin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
[2] Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632.
[3] Goldstein, J., Mittal, V., Carbonell, J., & Kantrowitz, M. (2000, April). Multi-document summarization by sentence extraction. In Proceedings of the 2000 NAACL-ANLPWorkshop on Automatic summarization-Volume 4 (pp. 40-48). Association for Computational Linguistics.
[4] Huang, L., He, Y., Wei, F., & Li, W. (2010, April). Modeling document summarization as multi-objective optimization. In Intelligent Information Technology and Security Informatics (IITSI), 2010 Third International Symposium on (pp. 382-386). IEEE.
[5] Gong, Y., & Liu, X. (2001, September). Generic text summarization using relevance measure and latent semantic analysis. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 19-25). ACM.
[6] Das, D., & Martins, A. F. (2007). A survey on automatic text summarization. Literature Survey for the Language and Statistics II course at CMU, 4, 192-195.
[7] Pourvali, M., & Abadeh, M. S. (2012). Automated text summarization base on lexicales chain and graph using of wordnet and wikipedia knowledge base. IJCSI International Journal of Computer Science, 9(1), 343-349.
[8] Sarkar, K. (2009). Sentence clustering-based summarization of multiple text documents. International Journal of Computing Science and Communication Technologies, 2(1), 325-335.
[9] Zhang, P. Y., & Li, C. H. (2009, August). Automatic text summarization based on sentences clustering and extraction. In Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on (pp. 167-170). IEEE.
[10] Thakkar, K. S., Dharaskar, R. V., & Chandak, M. B. (2010, November). Graph-based algorithms for text summarization. In Emerging Trends in Engineering and Technology (ICETET), 2010 3rd International Conference on (pp. 516-519). IEEE.
[11] Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of research and development, 2(2), 159-165.
[12] Sarkar, K. (2010). Syntactic trimming of extracted sentences for improving extractive multi-document summarization. Journal of Computing, 2(7), 177-184.
[13] Alguliev, R. M., Aliguliyev, R. M., & Isazade, N. R. (2013). Multiple documents summarization based on evolutionary optimization algorithm. Expert Systems with Applications, 40(5), 1675-1689.
[14] Abuobieda, A., Salim, N., Albaham, A. T., Osman, A. H., & Kumar, Y. J. (2012, March). Text summarization features selection method using pseudo genetic-based model. In Information Retrieval & Knowledge Management (CAMP), 2012 International Conference on (pp. 193-197). IEEE.
[15] Fattah, M. A., & Ren, F. (2009). GA, MR, FFNN, PNN and GMM based models for automatic text summarization. Computer Speech & Language, 23(1), 126-144.
[16] Gambhir, M., & Gupta, V. (2017). Recent automatic text summarization techniques: a survey. Artificial Intelligence Review, 47(1), 1-66.
[17] Radev, D. R., Jing, H., & Budzikowska, M. (2000, April). Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies. In Proceedings of the 2000 NAACL-ANLP Workshop on Automatic summarization (pp. 21-30). Association for Computational Linguistics.
[18] Zhang, Y., Xia, Y., Liu, Y., & Wang, W. (2015, June). Clustering Sentences with Density Peaks for Multi-document Summarization. In HLT-NAACL (pp. 1262-1267).
[19] Mani, I., & Bloedorn, E. (1997, June). Summarizing similarities and differences among related documents. In Computer-Assisted Information Searching on Internet (pp. 373-387).
[20] Barzilay, R., & Elhadad, M. (1999). Using lexical chains for text summarization. Advances in automatic text summarization, 111-121.
[21] Angheluta, R., De Busser, R., & Moens, M. F. (2002, July). The use of topic segmentation for automatic summarization. In Proceedings of the ACL-2002 Workshop on Automatic Summarization (pp. 11-12).
[22] Mihalcea, R. (2004, July). Graph-based ranking algorithms for sentence extraction, applied to text summarization. In Proceedings of the ACL 2004 on Interactive poster and demonstration sessions (p. 20). Association for Computational Linguistics.
[23] Chen, F., Han, K., & Chen, G. (2002, October). An approach to sentence-selection-based text summarization. In TENCON′02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering (Vol. 1, pp. 489-493). IEEE.
[24] Gupta, P., Pendluri, V. S., & Vats, I. (2011, February). Summarizing text by ranking text units according to shallow linguistic features. In Advanced Communication Technology (ICACT), 2011 13th International Conference on (pp. 1620-1625). IEEE.
[25] Mihalcea, R., & Tarau, P. (2004, July). TextRank: Bringing order into texts. Association for Computational Linguistics.
[26] Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22, 457-479.
[27] Radev, D. R., Blair-Goldensohn, S., & Zhang, Z. (2001). Experiments in single and multi-document summarization using MEAD. Ann Arbor, 1001, 48109.
[28] Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In Acm sigmod record (Vol. 22, No. 2, pp. 207-216). ACM.
[29] Baralis, E., Cagliero, L., Jabeen, S., & Fiori, A. (2012, March). Multi-document summarization exploiting frequent itemsets. In Proceedings of the 27th Annual ACM Symposium on Applied Computing (pp. 782-786). ACM.
[30] Baralis, E., Cagliero, L., Fiori, A., & Garza, P. (2015). Mwi-sum: A multilingual summarizer based on frequent weighted itemsets. ACM Transactions on Information Systems (TOIS), 34(1), 5.
[31] Baralis, E., Cagliero, L., Mahoto, N., & Fiori, A. (2013). GraphSum: Discovering correlations among multiple terms for graph-based summarization. Information Sciences, 249, 96-109.
[32] Patil, K., & Brazdil, P. (2007). Text summarization: Using centrality in the pathfinder network. Int. J. Comput. Sci. Inform. Syst [online], 2, 18-32.
[33] Boudin, F. (2013, October). A comparison of centrality measures for graph-based keyphrase extraction. In International Joint Conference on Natural Language Processing (IJCNLP) (pp. 834-838).
[34] Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text summarization branches out: Proceedings of the ACL-04 workshop (Vol. 8).
[35] Lin, C. Y., & Hovy, E. (2003, May). Automatic evaluation of summaries using n-gram co-occurrence statistics. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1 (pp. 71-78). Association for Computational Linguistics. |