博碩士論文 104521002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.117.91.204
姓名 戴梓堯(Zih-Yao Dai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點分子製作之冷卻器
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文理論討論量子點分子製作的冷卻器。隨著奈米元件的普及,奈米積體電路的散熱問題就顯得愈發重要,奈米積體電路的散熱問題愈來愈受重視並開發奈米冷卻器來解決,因此。我們利用Anderson模型來描述冷卻器。其主要結構為金屬電極及半導體的量子點分子。冷卻器的電流與電子熱流我們運用格林函數來推導出解析的形式。本理論也引進適當的聲子熱流模型,來討論聲子熱流在冷卻器的降溫特性中所扮演的角色。
摘要(英) We have theoretically investigated the properties of solid state cooler made of semiconductor quantum dot molecules. It is important to solve heat problems of circuits with nanoscale electronic components. Therefore, the design of nanoscale-coolers is desirable. We use the Anderson model to describe the Hamiltonian of solid state cooler made of quantum dot molecules. The electron and heat current of cooler are derived by the Green’s function technique. We also used an empirical model to include the phonon heat current. The temperature difference of cooler arising from phonon thermal conductance is discussed and analyzed.
關鍵字(中) ★ 冷卻器
★ 量子點分子
關鍵字(英)
論文目次 摘要 0
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章、導論 1
1-1前言 1
1-2 熱電效應及發展 2
1-3 固態冷卻器 4
1-4 研究動機 5
第二章:串接耦合量子點分子模型 6
2-1 前言 6
2-2 系統模型建立 6
2-3 系統電子總能 8
2-4 穿隧電流、熱流與費米-狄拉克分布函數 10
2-5 電子傳輸係數 11
2-6 固態冷卻器的能源轉換效率 12
第三章、串接耦合量子點分子冷卻器 14
3-1 前言 14
3-2 調變不同環境平衡溫度之效應 14
3-3 調變不同外部電壓之效應 18
3-4 調變不同穿隧率與電子躍遷效應 20
3-5 調變量子點間庫倫交互作用下之效應 22
第四章、聲子熱流對冷卻器溫差的效應分析 25
4-1 前言 25
4-2 聲子熱流效應 26
4-3 奈米線物理參數對冷卻器溫差的效應 27
4-4 調變平衡溫度對溫差的影響 30
第五章、結論 33
參考文獻 34
參考文獻

參考文獻

[1] Lon E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems”, Science 321, 1457 (2008).
[2] Y. G. Gurevich and G. N. Logvinov, “Physics of Thermoelectric Cooling”, Semicond. Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe, Semiconductor “Thermoelements, and Thermoelectric Cooling”, Infosearch Limited, London (1957).
[4] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures”, Science 303, 777 (2004).
[5] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys”, Nano Lett. 8, 4670 (2008).
[6] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimension Conductor”, Phys. Rev. B 47, 16631(R) (1993).
[7] Y. Yu. Peter,“Effect of Quantum Confinement on Electrons and Phonons in Semiconductors”, Fundamental of Semiconductors, 469, Springer, Berlin, Heidelberg (2010).
[8] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced Materials 19, 1043 (2007).
[9] Y. M. Lin and M. S. Dresselhaus, “Thermolectric properties of superlattice nanowires” , Phys. Rev. B 68, 075304 (2002).
[10] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229 (2002).
[11] G D Mahan and J O Sofo , “The best thermoelectric”, PNAS,93,7436(1996).
[12] Yen-Chun Tseng, David M.-T. Kuo, Yia-Chung Chang, and Yan-Ting Lin, "Heat rectification effect of serially coupled quantum dots",Appl. Phys. Lett 103, 053108 (2013).
[13] David M.-T. Kuo and Yia-chung Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions", Phys. Rev. B 81, 205321 (2010).
[14] D. L. Nika and E. P. Pokatilov, ‘‘Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering’’, Phys. Rev. B 84, 165415 (2011).
[15] A.-P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent Transport in Interacting and Noninteracting Resonant-tunneling Systems”, Phys. Rev. B 50, 5528 (1994).
[16] David M.-T. Kuo, and Yia-Chung Chang, “Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes” arXiv:1209.0506(2012).
[17] David M.-T. Kuo, and Yia-Chung Chang, “Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System”, Jpn. J. Appl. Phys. 50, 105003 (2011).
[18] David M T Kuo , Chih-Chieh Chen, and Yia-Chung Chang, ‘‘Large enhancement in thermoelectric efficiency of quantum dot junction due to increase of level degeneracy’’,Phys.Rev.B.95,075432(2017).
[19] Renkun Chen, Allon I. Hochbaum, Padraig Murphy, Joel Moore, Peidong Yang, and Arun Majumdar, ‘‘Thermal Conductance of Thin Silicon Nanowires’’, Phys. Rev. Lett. 101, 105501(2008).
[20] A.I.Hochbaum, R. Chen, R. D. Delgadol, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, ‘‘Enhanced thermoelectric performance of rough silicon nanowire’’, Nature 451, 163(2008).
指導教授 郭明庭 審核日期 2017-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明