博碩士論文 104521085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.142.255.150
姓名 王淳(Chun Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以40-nm CMOS製程實現操作於100-GHz 之功率放大器設計
(A 100-GHz Power Amplifier Design in 40-nm CMOS Process)
相關論文
★ 以90-nm CMOS 製程實現之47-GHz 壓控振盪器設計★ 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計
★ 使用電流路徑操作技術之無巴倫差動輸出倍頻器★ 使用系統封裝技術實現高頻率射頻能量獵取電路
★ 擁有高增益之高模態介電共振器晶片上天線之340-GHz兆赫茲影像器★ 應用於感測器與太赫茲通訊之互補式金氧半高頻電路設計
★ 應用於毫米波影像與太赫茲通訊之互補式金氧半94-GHz及200-GHz接收機設計★ 應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器
★ 使用40奈米互補式金氧半製程之85-GHz功率放大器設計★ 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
★ 應用於太赫茲影像雷達及無線通訊系統之40-nm CMOS壓控振盪器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文提出一個以TSMC 40-nm CMOS製程實現操作於100-GHz之功率放大器之設計。此功率放大器電路設計為了應用於200-GHz發射機電路,避免後級電路因承受過大的功率而導致燒毀的可能性,因此設計理念不同於一般功率放大器,並未加入為了提高輸出功率的多路功率合成器的設計。
論文第一部分說明功率放大器的基本設計理論,包括直流偏壓點的設計及負載線理論。第二部分則是100-GHz兩級功率放大器之設計,電路架構使用共源級組態,加入了交叉耦合電容同時提高穩定度及增益,並且使用共振耦合網路作為阻抗匹配網路及巴倫器,此功率放大器電路之模擬結果為9.49 dBm的輸出功率,功率附加效率為6.95%, 1-dB壓縮點輸出功率為7.42 dBm,頻寬為31%
第三部分則是200-GHz發射機之電路設計,此電路包含壓控振盪器、驅動放大器、功率放大器、振幅偏移調變器、二倍頻器。壓控振盪器所產生的100-GHz訊號經由驅動放大器及功率放大器放大以獲足夠的輸出功率,再經由二倍頻器將其工作頻率倍頻至200-GHz,最後經由調變器進行調變。此發射機具有-0.95 dBm的輸出功率,調變速度可達20Gb/s。
摘要(英)
This thesis proposes a 100-GHz power amplifier design in TSMC 40-nm CMOS process. The power amplifier applies to the 200-GHz transmitter circuit. To avoid braking the next stage circuit, the power amplifier does not add the power combiner design which is designed for increasing the output power.
The first part is the basic theories related to the design of power amplifiers, including the DC bias point of transistor and the load line theory.
The second part is the design of the 100-GHz two stage power amplifiers. The common source mode is chosen in this design for its high gain characteristic. To increase the stability and gain , the cross couple capacitors is added for resonating the parasitic capacitors of the transistors. The transformers in this power amplifier are worked as the impedance matching network and balun. The power amplifier exhibits saturation output power of 9.49 dBm, maximum power-added efficiency (PAE) of 6.95%, and the output power at 1-dB gain compression point of 7.42 dBm. The 3-dB bandwidths is 31%.
The third part is the design of the 200-GHz transmitter. This circuit consists of a voltage control oscillator (VCO), a driver amplifier, a power amplifier, a doubler, and an ASK modulator. The VCO generates the 100-GHz signal, and then it gets enough output power by driver amplifier and power amplifier. The operating frequency will be raised up to 200-GHz by doubler. The signal will be modulated with a digital data signal by ASK modulator in the end. This transmitter provides output power of -0.95 dBm and a data rate of 20 Gb/s at 200 GHz.
關鍵字(中) ★ 毫米波
★ 功率放大器
★ 發射機
關鍵字(英) ★ Millimeter Wave
★ Power Amplifier
★ Transmitter
論文目次
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
1-1 研究動機 1
1-2 章節簡介 2
第二章 功率放大器設計原理 3
2-1 功率放大器種類 3
2-2 克里普斯負載線理論 10
2-3 負載推移原理 14
第三章 100-GHz 功率放大器設計 17
3-1 前言 17
3-2 功率電晶體設計 17
3-3 匹配網路設計 26
3-4 電路佈局及模擬 37
3-5 結果與討論 41
第四章 200-GHz 無線發射機設計 42
4-1 前言 42
4-2 電路架構與原理 43
4-3 電路佈局及模擬 59
4-4 結果與討論 61
第五章 結論與未來展望 62

參考文獻 63
參考文獻
[1] Steve C. Cripps, “RF power amplifiers for wireless communications,” 2nd edition, Artech House, 1999.
[2] C.-L. Ko, C.-H. Li, C.-N. Kuo, M.-C. Kuo, D.-C. Chang, ”A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vo1.61, no.6, pp. 2438-2446, June 2013
[3] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554–564, Mar. 2010.
[4] D. Zhao and P. Reynaert, “A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2323–2337, 2013.
[5] Huei Wang, et al., “Design of a V-Band 20-dBm wideband power amplifier using transformer-based radial power combining in 90-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no.12, pp. 4545–4560, 2016
[6] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer—A new power-combining and impedance-transformation technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316–331, Jan. 2002.
[7] S. Kim, K. Lee, J. Lee, B. Kim, S. D. Kee, I. Aoki, and D B. Rutledge, “An optimized design of distributed active transformer,” IEEE Transactions on Microwave Theory and Techniques, vol.53, PP.380-388, Jan. 2005.
[8] E. Kaymaksut, B. Francois, and P. Reynaert, “Analysis and optimization of transformer-based power combining for back-off efficiency enhancement,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, no. 4, pp. 825–835, Apr. 2013
[9] D. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 683-690, Feb. 2015.
[10] H. S. Son et al., “A 109 GHz CMOS power amplifier with 15.2 dBm Psat and 20.3 dB gain in 65-nm CMOS technology,” IEEE Microw. Compon. Lett., vol. 26, no. 7, pp. 510-512, Jul. 2016.
[11] B. Razavi, “RF microelectronics,” 2nd edition, Prentice-Hall, 2011.
[12] H.-C. Lin and G. M. Rebeiz, “A SiGe multiplier array with output power of 5–8 dBm at 200–230 GHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2050–2058, Jul. 2016.
[13] R. Shu, A. Tang, B. Drouin, and Q. Gu, “A 54–84 GHz CMOS SPST switch with 35 dB isolation,” in Proc. IEEE RFIC, 2015, pp. 1–4.
指導教授 李俊興(Chun-Hsing Li) 審核日期 2017-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明