參考文獻 |
6. REFERENCE
1. Bank, W., Towards 2015 : Spending for Indonesia′s Development, Shaping the Prospects of a Middle-Income Country. 2009.
2. AECOM, Asia Construction Outlook 2014 Released, in Asia Outlook. Asia Outlook Magazine part of Outlook Publishing Norwich, United Kingdom.
3. Sumanth, D.J., Total Productivity Management (TPmgt): A Systemic and Quantitative Approach to Compete in Quality, Price and Time. CRC Press.
4. Mawdesley M J, Q.S., Systems Thinking and Construction Productivity, , in International Conference on Systems Thinking in Management: Dynamics of Theory and Practice. 2000: Geelong, Victoria, Australia. p. 414-419.
5. Park, H.-S., Thomas, S.R. & Tucker, R.L., Benchmarking of Construction Productivity. Journal of Construction Engineering and Management, 2005. 131(7): p. 772-778.
6. Jan Bröchner, A.A.S., Construction productivity growth and business services. Economies et societes, 2013. 47(3-4): p. 509-529.
7. Pekuri, A., H. Haapasalo, and M. Herrala, International Journal of Performance Measurement, 2011. 1: p. 19-58.
8. Stainer, A., Capital input and total productivity management. Management Decision, 1997. 35(3): p. 224 - 232.
9. Huang, Metrics and Tools for Measuring Construction Productivity: Technical and Empirical Considerations. NIST Special Publication, 2009. 1101.
10. Jonsson, J., Construction site productivity measurements: selection, application and evaluation of methods and measures. 1996, Luleå University of Technology: Sweden.
11. Park, H.-S., Conceptual framework of construction productivity estimation. KSCE Journal of Civil Engineering, 2006. 10(5).
12. Paul W. Chan, A.K., Productivity improvements: understand the workforce perceptions of productivity first. Personnel Review, 2007. 36(4): p. 564 – 584.
13. Groak, S., Is construction an industry? Notes towards a greater analytic emphasis on external linkages. Construction management and economics, 1994. 12: p. 287-293.
14. Industry, C.o.C., CBSL Annual Report. Institute of Construction Training and Development, 2014.
15. Lesmana., A.P., Ratna S. Alifen, ANALISIS PRODUKTIVITAS PEKERJAAN PONDASI BORED PILE (STUDI KASUS PADA BANGUNAN PERKANTORAN 31 LANTAI). 2014: p. 7.
16. Olomolaiye P, J.A., Harris F Construction Productivity Management. Chartered Institute of Building, UK., 1998.
17. Winch, G.a.C., B Benchmarking on-site productivity in France and the UK: a CALIBRE approach. Construction management and economics, 2001. 19: p. 577-590.
18. Varma Santosh, M.R.A., Productivity in Building Construction. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2014. 10(5): p. 64-71.
19. Halpin, T.M.Z.a.D.W., Quantitative Assessment for Piles Productivity Factors. Journal of Construction Engineering and Management, 2004: p. 13.
20. Peurifoy, R.L., Ledbetter, W. L., and Schexnayder, C. J. , Construction planning, equipment, and methods. 5 ed. 1996, New York: McGraw-Hill.
21. Soekiman., A., Krishna S. PRIBADI,Biemo W. SOEMARDI,Reini D. WIRAHADIKUSUMAH, STUDY ON FACTORS AFFECTING PROJECT LEVEL PRODUCTIVITY IN INDONESIA. ANNALS OF FACULTY ENGINEERING HUNEDOARA - INTERNATIONAL JOURNAL OF ENGINEERING, 2011. 3: p. 6.
22. Enshassi., A., Sherif Mohamed, Saleh Abushaban, FACTORS AFFECTING THE PERFORMANCE OF CONSTRUCTION PROJECTS IN THE GAZA STRIP. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2009: p. 269-280.
23. Homyun Jang, K.K., Juhyung Kim, and Jaejun Kim Labour productivity model for reinforced concrete construction projects. Construction Innovation Process,, 2011. 1: p. 11.
24. Durdyev, S., & Mbachu, J. , On-site Labour Productivity of New Zealand Construction Industry: Key Constraints and Improvement Measures. Australasian Journal of Construction Economic and Building, 2011. 3: p. 18 - 33.
25. Gidado, N.A.a.K., Evaluation of Factors Affecting Productivity in the UAE Construction Industry: Regression Models. 2009: p. 12.
26. Atkinson, W., Wells, A Stakeholderpproach to Strategic Performance Measurement. Sloan Management Review, 1997. 38(3): p. 237.
27. PF Kaming, G.H., ST Kometa, and P Olomolaiye, Severity diagnosis of productivity problems – a reliability analysis. International Journal of Project Management, 1998. 16(2): p. 107–113.
28. Sweis, G.J., Impact of conversion technology on productivity in masonry construction. 2000.
29. Sanders, S.R.a.T., H. R., Masonry productivity forecasting model. 1993. Vol. 119-1: p. 16.
30. Smith, S.D., Earthmoving productivity estimating using linear regression techniques. 1999. Vol. 125-3: p. 8.
31. Thomas, H.R.a.Z., I., Construction baseline productivity: Theory and practice. Journal of Construction Engineering and Management, 1999. Vol. 125-5: p. 8.
32. Hanna, A.S., Russell, J. S., Gotzion, T. W., and Nordheim, E. V., Impact of change orders on labor efficiency for electrical construction. Journal of Construction Engineering and Management, 1999a. Vol. 125-3: p. 8.
33. Koehn, E.a.B., G. and Climate effects on construction. Journal of Construction Engineering and Management, 1985. Vol. 111-2: p. 8.
34. Oglesby, C.H., Parker, H. W., and Howell, G. A., ed. Productivity Improvement in Construction. 1989.
35. Thomas, H.R., Mathews, C. T., and Ward, J. G., “Learning curve models of construction productivity. Journal of Construction Engineering and Management, 1986. Vol. 112-2: p. 13.
36. Thomas, H.R.a.Y., I., Factor model of construction productivity. Journal of Construction Engineering and Management, 1987. Vol. 113-4: p. 15.
37. Joachims, T., Learning to classify text using support vector machines: Methods, theory and algorithms. 2002: Kluwer Academic Publishers.
38. Wang, Y.-R., C.-Y. Yu, and H.-H. Chan, Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. International Journal of Project Management, 2012. 4: p. 30.
39. Naguib, I.A.a.H.W.D., Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012. 86.
40. Shah, R.S., Support Vector Machines for Classification and Regression. 2007, McGill University.
41. Santosa, B., Tutorial Support Vector Machine. Teknik Idustri, ITS.[Online]. Tersedia: http://www. google. co. id/url, 2010.
42. Lam, K.C., E. Palaneeswaran, and C.-y. Yu, A support vector machine model for contractor prequalification. Automation in Construction, 2009. 18(3): p. 321-329.
43. Parrella, F., Online support vector regression. Master′s Thesis, Department of Information Science, University of Genoa, Italy, 2007.
44. Yasin, H., A. Prahutama, and T.W. Utami, PREDIKSI HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION DENGAN ALGORITMA GRID SEARCH. MEDIA STATISTIKA, 2014. 7(1): p. 29-35.
45. Scholkopf, B.a.A.J.S., Learning with kernels: support vector machines, regularization, optimization, and beyond. 2001: MIT press.
46. Subagyo, P., Forecasting Konsep dan Aplikasi. 1986, Yogyakarta: BPFE UGM.
47. Box, G.E.P., dan G. M. Jenkins, Time series Analysis, Forecasting, and Control, ed. R. edition. 1976, San Fransisco: Holden-Day.
48. Makridakis, S., Wheelwright, SC, and Hyndman, RJ Forecasting: methods and applications. Vol. 3rd edition. 1998, New York.
49. Han, J., Data Mining : Concepts and techniques. 2006: Morgan Kaufman.
50. Nugroho, SVM: Paradigma Baru dalam Softcomputing dan Aplikasinya, in Konferensi Nasional Sistem & Informatika 2008. 2008: Bali.
51. Klanac, G.P.a.N., E. L., Trends in construction Loss in productivity claims. Journal of Professional Issues in Engineering Education and Practice, 2004. Vol. 130(No. 3). |