以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:79 、訪客IP:18.225.54.85
姓名 吳政峯(Cheng-Feng Wu) 查詢紙本館藏 畢業系所 機械工程學系在職專班 論文名稱 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究
(Study of Optical Thin Films by Optical Emission Spectrometer in the High-Power Impulse Magnetron Sputtering System)檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究是以Si半導體材料為靶材,使用高功率脈衝磁控濺鍍(High-Power Impulse Magnetron Sputtering, HiPIMS)沉積氮化矽(Silicon Nitride, Si3N4)薄膜於B270玻璃基板。使用高功率脈衝磁控濺鍍,可以藉由調整脈衝的中斷時間,並將能量儲存累積於脈衝模組中的電容,再將電能釋放出來,於是可以讓靶材的原子獲得更具有強大的能量來濺射到基板上,可以使薄膜獲得具有足夠的能量,並且可以增加薄膜的附著力與緻密性。
選定矽這種材料的原因主要是在光學產業中可應用在光學玻璃鍍製氮化矽薄膜的製造。在光學玻璃氮化矽薄膜中使用矽材料的好處就是可以增加玻璃的光學高穿透性,並且它具有高折射的效果。
近年來電漿製程技術被運用在真空鍍膜,在低壓真空的狀態之下
電漿內部產生不同的變化特性同時又存在電漿輝光的發光特性,而這些存在電漿內部所有的性質變化,就可以使用光發射光譜儀(Optical Emission Spectroscopy, OES)來作為監控電漿。
研究初期以硬體架設方面搭配光發射光譜儀來診斷高功率脈衝磁控濺鍍之電漿。研究過程中其結合電漿光譜軟體,以固定功率為600w、氬氣流量為27sccm、開始工作時間Ton=50μs,再藉由不同的脈衝儲能時間Toff=200μs及Toff=900μs和不同的氮氣流量,來偵測電漿內部元素光譜強度之變化,並可以得知光譜強度在波長的位置,其再結合資料庫軟體做比對更可以完整地分析出電漿的電離現象,由現象可以預知氮氣的流量,來鍍製出氮化矽薄膜。研究最後再針對氮化矽薄膜來分析薄膜的光學特性包含穿透率(T%)、折射率(n)與消光係數(k)並且來探討在怎麼樣的脈衝儲能時間Toff=200μs及Toff=900μs和不同的氮氣流量之下,而它的穿透率(T%)、折射率(n)與消光係數(k)是最好的。
研究結果以最佳脈衝儲能時間為Toff=900μs、氮氣流量為20sccm、穿透率(T%)為91.76%、折射率(n)為2.04、消光係數(k)最小為0,成功地鍍製出高折射率無吸收的均勻性氮化矽光學薄膜。摘要(英) In this study, High-Power Impulse Magnetron Sputtering (HiPIMS) deposition Silicon Nitride (Si3N4) thin films on B270 glass substrate was investigated using Si semiconductor material as the target. Using high power pulsed magnetron sputtering, by adjusting the pulse interruption time and the capacitance energy storage module for pulse accumulation, then the electric energy is released, for can let the target atom has more powerful energy to sputtering onto the substrate, the thin films have enough energy and can increase thin films the adhesion and density.
The reason for choosing silicon material is that it can be used in optical industry to manufacture silicon nitride thin films on optical glass. The advantage of using silicon material in optical glass silicon nitride thin films are to increase the optical high penetration of glass, and it have high refraction effect.
In recent years, plasma processing technology is used in vacuum coating, luminescent properties and existing plasma glow under low vacuum state plasma generated inside the change of different characteristics, and these are all the electric properties of plasma, can be used Optical Emission Spectroscopy (OES) as the monitoring plasma.
The optical emission spectroscopy was used to diagnose the high power pulsed magnetron sputtering plasma at the beginning of the research. In the process of study, it combines the plasma spectrum software with the fixed power of 600w, the argon flow rate of 27sccm, the start working time Ton=50μs, and then uses different pulse energy storage time Toff=200μs and Toff=900μs and different nitrogen flow rate, to detect the spectral intensity changes of elements in plasma, and to know the spectral intensity at the wavelength position, It can be combined with the database software to do more complete analysis of the plasma ionization phenomenon, and the flow rate of nitrogen can be predicted by the phenomenon, to produce the silicon nitride thin films. Final study, the optical properties of the thin films were analyzed for the silicon nitride thin films, including the transmittance (T%), refractive index (n) and extinction coefficient (k) and were discussed under what kind of pulse energy storage time Toff=200μs and Toff=900μs and different nitrogen flow rate, and its transmittance (T%), refractive index (n) and extinction coefficient (k) were the best.
The research results in the best pulse energy storage time was Toff=900μs, the nitrogen flow rate was 20sccm, the transmittance(T%) was 91.76%, the refractive index (n) was 2.04, the minimum extinction coefficient (k) was 0, successfully coated with high refractive index no absorption of uniform silicon nitride optical thin films.關鍵字(中) ★ 高功率脈衝磁控濺鍍
★ 光發射光譜儀
★ 光學薄膜關鍵字(英) ★ High-Power Impulse Magnetron Sputtering
★ Optical Emission Spectrometer
★ Optical Thin Films論文目次 總目錄
摘要 i
Abstract iii
致謝 v
總目錄 vii
圖目錄 x
表目錄 xiv
縮寫表 xv
單位符號表 xvi
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的 5
1-4 論文架構 5
第二章 研究基礎理論 6
2-1 物理氣相沉積機制 6
2-2 濺射原理 7
2-3 直流濺鍍 8
2-4 射頻濺鍍 9
2-5 磁控濺鍍 10
2-6 高功率脈衝磁控濺鍍 13
2-7 反應性濺鍍法之成長氮化物薄膜特性 15
2-8 低壓電漿輝光放電之光放射光譜 16
第三章 研究方法與設備儀器 21
3-1 實驗方向 21
3-2 實驗規劃 22
3-3 實驗架構 23
3-4 實驗方法 24
3-4-1 鍍膜實驗前置準備 24
3-4-2 鍍膜實驗步驟流程 24
3-4-3 鍍膜實驗相關分析 26
3-4-4 鍍膜實驗製程沉積薄膜參數 27
3-4-5 光發射光譜儀監控電漿製程參數 30
3-5 實驗鍍膜設備 31
3-5-1 高功率脈衝磁控濺鍍設備 31
3-6 實驗量測儀器 33
3-6-1 可見光及近紅外光之光譜儀 33
3-6-2 分析光學常數之包絡法 33
3-7 實驗監控儀器 36
3-7-1光發射光譜儀 36
第四章 實驗結果與討論 38
4-1 Si3N4 電漿光譜圖 38
4-2 電漿光譜之元素能階與波長之關係 40
4-3 Si(I)與Si(III)電漿光譜Toff=200μs及Toff=900μs不同N2流量
訊號強度分析 41
4-4 N(I)與N(III)電漿光譜Toff=200μs及Toff=900μs不同N2流量訊
號強度分析 44
4-5 Toff=200μs及Toff=900μs不同N2流量單層氮化矽膜鍍製 47
4-5-1 Toff=200μs N2 20sccm單層光學膜穿透率、折射率與消光
係數 48
4-5-2 Toff=200μs N2 25sccm單層光學膜穿透率、折射率與消光
係數 52
4-5-3 Toff=200μs N2 30sccm單層光學膜穿透率、折射率與消光
係數 56
4-5-4 Toff=200μs N2 40sccm單層光學膜穿透率、折射率與
消光係數 60
4-5-5 Toff=900μs N2 20sccm單層光學膜穿透率、折射率與消光
係數 65
4-5-6 Toff=900μs N2 25sccm單層光學膜穿透率、折射率與消光
係數 69
4-5-7 Toff=900μs N2 30sccm單層光學膜穿透率、折射率與
消光係數 73
4-5-8 Toff=900μs N2 40sccm單層光學膜穿透率、折射率與消光
係數 77
4-6 Si3N4 Toff=200μs及Toff=900μs不同N2流量的450nm與
550nm光學折射率 82
4-7 Si3N4 Toff=200μs及Toff=900μs不同N2流量沉積速率 84
第五章 結論 86
參考文獻 87參考文獻 [1] 周淑婷, "氮氧化矽絕緣層其光致發光及拉曼光譜與MOS結構電容-
電壓量測之研究," 物理研究所, 國立中山大學, 高雄台灣,
2003.
[2] 郭家維, "超高真空濺鍍沉積Ta2O5薄膜電容元件的製備," 半導體
與光電產業研發碩士班, 逢甲大學, 台中台灣, 2006.
[3] 劉安鈞, "麻田散鐵不銹鋼類鑽碳膜顯微組織及其機械性質之研
究," 機械工程學系, 中華大學, 新竹台灣, 2009.
[4] 何英杰, "裝飾性氮化鋯鍍膜運用OES系統調控薄膜顏色之研究,"
材料暨系統工程研究所, 明道管理學院, 彰化台灣, 2006.
[5] 盧俊宏, "以包絡法動態膜厚監控—模擬濺鍍大面積Ta2O5薄膜之均
勻性研究," 物理學系, 輔仁大學, 台北台灣, 2007.
[6] 余佳璁,"以極值法動態膜厚監控及厚度補償-模擬濺鍍大面積
Ta2O5薄膜之均勻性研究," 物理學系, 輔仁大學, 台北台灣,
2008.
[7] 趙恩鈺, "在Ge/Sb,Ge/Bi,Ge/SiO2,Si/SiO2薄膜系統之磁性研
究," 材料工程研究所, 國立臺灣海洋大學, 基隆台灣, 2013.
[8] 張進發, "SiO2、TiO2 與TiO2-SiO2薄膜抗反射特性之研究," 材
料科學與工程學系, 明道大學, 彰化台灣, 2011.
[9] 紀華峻, "透明導電薄膜在軟性基材上之製程及其光電特性," 電腦
與通訊研究所, 樹德科技大學, 高雄台灣, 2010.
[10] 林志雄, "使用反應濺鍍法於塑膠基板上製鍍抗反射膜之研究,"
光電科學與工程學系, 國立中央大學, 桃園台灣, 2008.
[11] 楊偉仁, "以直流磁控及高功率脈衝磁控濺鍍之TiO2光觸媒薄膜
的特性分析比較," 機械工程學系, 國立交通大學, 新竹台灣,
2013.
[12] K. Sarakinos, J. Alami, and S. Konstantinidis, "High
power pulsed magnetron sputtering: A review on
scientific and engineering state of the art,"
Surface and Coatings Technology, vol. 204, pp. 1661-
1684, 2010.
[13] 陳品任, "以金屬錫為靶材利用脈衝直流磁控濺鍍法鍍製FTO薄膜
之研究," 光電科學與工程學系, 國立中央大學, 桃園台灣,
2010.
[14] 阮冠閔, "使用蘭摩爾探針與光放射光譜儀進行ECR-CVD即時性非
晶矽薄膜製程電漿診斷," 機械工程學系光機電工程碩士班, 國立
中央大學, 桃園台灣, 2012.
[15] 張洪銘, "高穿透類鑽碳膜之研究," 光電科學與工程學系, 國立
中央大學, 桃園台灣, 2015.
[16] 楊超棨, "介電質常壓電漿產生器之開發及其於質譜分析之應用,"
機械與機電工程研究所, 國立中山大學, 高雄台灣, 2010.
[17] 楊學修, "利用OES光譜儀診斷作為電漿氮化閘極製程之氮濃度之
應用," 工學院專班半導體材料與製程設備組, 國立交通大學,
新竹台灣, 2007.
[18] 李佳真, "直流磁控濺鍍氧化膜界面應力之研究," 光電科學與工
程學系, 國立中央大學, 桃園台灣, 2009.
[19] Yizhou Song, Takeshi Sakurai, Kazuhiko Maruta,
Akinori Matusita, Shigeharu Matsumoto, Shinichiro
Saisho, and Kazuo Kikuchi, "Optical and structural
properties of dense SiO2, Ta2O5 and Nb2O5 thin-films
deposited by indirectly reactive sputtering
technique," Vacuum, vol. 59, pp. 755-763, 2000.
[20] H. Habazaki, T. Matsuo, H. Konno, K. Shimizu, K.
Matsumoto, K. Takayama, Y. Oda, P. Skeldon, and G.
E. Thompson, "Analysis of anodic films on Nb and
NbNx by glow discharge optical emission
spectroscopy," Surface and Interface Analysis, vol.
35, pp. 618-622, 2003.
[21] G. Zambrano, H. Riascos, P. Prieto, E. Restrepo, A.
Devia, and C. Rincon, "Optical emission spectroscopy
study of r.f. magnetron sputtering discharge used
for multilayers thin film deposition," Surface and
Coatings Technology, vol. 172, pp. 144-149, 2003.
[22] M. Nisha, K. J. Saji, R. S. Ajimsha, N. V. Joshy,
and M. K. Jayaraj, "Characterization of radio
frequency plasma using Langmuir probe
and optical emission spectroscopy," Journal of
Applied Physics, vol. 99, pp. 033304, 2006.
[23] N Britun, M Gaillard, L Schwaederle, Y M Kim, and J
G Han, "Spatial characterization of Ar–Ti plasma in
a magnetron sputtering system using emission and
absorption spectroscopy," Plasma Sources Science and
Technology, vol. 15, pp. 790-796, 2006.
[24] A Belkind, W Zhu, J Lopez, and K Becker, "Time-
resolved optical emission spectroscopy during pulsed
dc magnetron sputter deposition of Ti and TiO2 thin
films," Plasma Sources Science and Technology, vol.
15, pp. S17-S25, 2006.
[25] S. B. S. Heil, F. Roozeboom, M. C. M. van de Sanden,
and W. M. M. Kessels, "Plasma-assisted atomic layer
deposition of Ta2O5 from alkylamide precursor and
remote O2 plasma," American Vacuum Society, vol.
26(3), pp. 472-480, 2008.
[26] L M Isola, B J Gomez, and V Guerra, "Determination
of the electron temperature and density in the
negative glow of a nitrogen pulsed discharge using
optical emission spectroscopy," Journal of Physics
D: Applied Physics, vol. 43, pp. 015202(10pp), 2010.
[27] M. A. Song, Y. W. Lee, and T. H. Chung,
"Characterization of an inductively coupled
nitrogen-argon plasma by Langmuir probe combined
with optical emission spectroscopy," Physics of
Plasmas, vol. 18, pp. 023504, 2011.
[28] A. Kolpakova, P. Kudrna, and M. Tichy, "Study of
Plasma System by OES (Optical Emission
Spectroscopy)," Proceedings of Contributed Papers,
pp. 180-185, 2011.
[29] Jorge Posada, Marie Jubault, Angelique Bousquet,
Eric Tomasella, and Daniel Lincot, "In-situ optical
emission spectroscopy for a better control of hybrid
sputtering/evaporation process for the deposition of
Cu(In,Ga)Se2 layers," Thin Solid Films, vol. 582,
pp. 279-283, 2015.
[30] B. B. Sahu, Jeon G. Han, Masaru Hori, and Keigo
Takeda, "Langmuir probe and optical emission
spectroscopy studies in magnetron sputtering plasmas
for Al-doped ZnO film deposition," Journal of
Applied Physics, vol. 117, pp. 023301, 2015.指導教授 郭倩丞 詹佳樺 審核日期 2017-12-7 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare