博碩士論文 104322045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:229 、訪客IP:3.15.221.138
姓名 陳盈倫(Ying-Lun Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 緩衝材料在不同圍壓下之工程性質
(Engineering Properties of Buffer Material under Different Confining Pressures)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 具裂縫的緩衝材料自癒行為模擬
★ 具不同上部結構之樁基礎受振行為★ 基盤土壤液化對上方土堤位移的影響
★ 回填與緩衝材料之動態強度★ 砂質土壤中柔性擋土牆在動態載重下的行為
★ Effect of Vertical Drain Methods on The Soil Liquefaction★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake
★ 微生物膠結作用對砂質土壤性質的影響★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策
★ 土壤液化引致側向滑移對樁基礎之影響及其對策★ 挖掘機鏟斗上土壤黏附問題的基礎研究
★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應
★ 應用時域反射法於地層下陷監測之改善研發★ Seismic response of sheet pile walls with and without anchors by centrifuge modeling tests
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 核能發電衍生用過核子燃料的最終處置問題,對處置方式而言,採深層地質處置是國際公認較可行的方法。深層處置設施通常是在地下300 m到1,000 m深的完整岩體中,開挖隧道及處置孔;另將用過核子燃料裝入廢棄物罐中,周圍以緩衝材料包覆再埋置於處置孔,藉由工程障壁與母岩所形成之多重障壁,遲滯核種的釋出與遷移。因此,與廢棄物罐直接接觸的緩衝材料,便扮演著極重要的角色,其需具備低滲透性、高回脹性等特性之外,還需要有適當的力學強度,以遲滯核種藉由地下水釋出到生物圈,達到將用過核子燃料永久隔離的目標。
本研究為探討緩衝材料於處置現場之工程性質,透過進行室內試驗,模擬現地處置時可能會引致之情況,主要分為兩種試驗進行。為模擬緩衝材料於處置環境下之力學特性,利用不壓密不排水三軸試驗進行試驗,探討不同統體單位重、不同含水量及不同圍壓下對緩衝材料之強度影響,求取其力學參數;以及模擬長期處置期間緩衝材料受廢棄物罐沉陷與處置場壓力等影響,利用單向度壓密試驗探討相關壓縮參數及推求其滲透性。統整上述試驗結果取得工程性質參數並判別試驗可行性,以提供後續研究參考使用。
摘要(英) For the use of radioactive energy, it is important to develop techniques for the disposal of radioactive wastes in the world. The deep geological repository is currently recognized as a feasible disposal concept. The deep repository is host rock at a depth of 300 m to 1,000 m, and the canisters are surrounded by buffers. The deposition holes would be drilled in bed rock and set up with canisters and buffers. These make the canister not easily affected by natural operation, humanity activities and tectonic movement with high stability. As it needs a quite long time for storage, the long-term safety needs to be examined and regulated with design premises. All the design premises must to be fulfill to ensure that the barrier functions works and then reach the long-term safety of deposition. Therefore, engineering properties of buffer material under high confining pressure plays the important role.
In order to realize the engineering properties of buffer material, use laboratory tests to simulate the situations of in-situ repository. The experient was divided into two parts for this research. Considering different states of buffer marerial, used different bulk densities, water contents and confining pressures to simulate the mechanical characteristic by unconsolidated-undrained triaxial test. And used one-dimensional consolidation test to simulate the settlement by canister and pressures. This study uses triaxial test and consolidation test to simulate the confining pressure from low to high confining pressure. Using this method to analyze mechanical parameters of buffer material and estimate deformation for long times.
關鍵字(中) ★ 緩衝材料
★ 三軸試驗
★ 單向度壓密試驗
★ 工程性質
關鍵字(英) ★ Buffer material
★ Triaxial test
★ One-dimensional consolidation test
★ Engineering property
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
符號說明 xi
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 最終處置場設計概念 3
2-2 國內外最終處置概況 5
2-2-1 各國最終處置概念 5
2-2-2 台灣最終處置概況 8
2-3 緩衝材料之概念與功能需求 10
2-4 膨潤土基本特性 12
2-4-1 基本性質 12
2-4-2 回脹機制 12
2-5 影響處置現場緩衝材料受壓之因素 14
2-5-1 地下水入侵 14
2-5-2 緩衝材料回脹壓力 16
2-5-3 長期現地應力 19
2-6 緩衝材料之工程性質 20
2-6-1 剪力強度 20
2-6-2 壓縮性 24
2-6-3 滲透性 25
2-7 單向度壓密試驗相關參數 26
2-7-1 壓縮指數Cc 26
2-7-2 壓縮係數av 27
2-7-3 體積壓縮係數mv 28
2-7-4 壓密係數cv 28
2-7-5 二次壓縮指數Cα 31
第三章 試驗材料、設備與步驟 32
3-1 概述 32
3-2 試驗材料 32
3-3 試體製作 34
3-3-1 製作方法 34
3-3-2 壓製步驟 35
3-4 三軸試驗 38
3-4-1 100 ton MTS (100噸材料試驗機) 38
3-4-2 資料擷取系統 40
3-4-3 三軸室 41
3-4-4 加壓系統 43
3-4-5 試驗步驟 45
3-5 單向度壓密試驗 49
3-5-1 試驗設備 49
3-5-2 試驗步驟 51
第四章 試驗規劃與結果討論 53
4-1 試驗規劃 53
4-2 緩衝材料之力學參數評估 57
4-2-1 D18-W17試驗 58
4-2-2 D18-WH試驗 63
4-2-3 D20-W17試驗 68
4-2-4 D20-WH試驗 73
4-2-5 不同膨潤土試驗比較 78
4-3 單向度壓密試驗結果 79
4-4 緩衝材料之壓縮及滲透參數推估 82
4-4-1 短期參數評估 82
4-4-2 長期參數評估 84
第五章 結論與建議 91
5-1 結論 91
5-2 建議 92
參考文獻 93

參考文獻 [1] ASTM D2435-96, “Standard Test Method for One-Dimensional Consolidation Properties of Soils,” American Society for Testing and Materials, West Conshocken, Pennsylvania, USA.
[2] ASTM D2850-95, “Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils,” American Society for Testing and Materials, West Conshocken, Pennsylvania, USA.
[3] Åkesson, M., Kristensson, O., Börgesson, L., Dueck, A., Hernelind, J., “THM modelling of buffer, backfilland other system components,” SKB TR-10-11, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[4] Alonso, E. E., Alcoverro, J., Coste, F., Malinsky, L., Merrien-Soukatchoff, V., Kadiri, I., ... & Armand, G., “The FEBEX benchmark test: case definition and comparison of modelling approaches,” International Journal of Rock Mechanics and Mining Sciences, 42(5), pp.611-638 (2005).
[5] Börgesson, L., Clay Technology AB., “Mechanical interaction buffer/backfill - Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill,” SKB TR-09-42, Swedish Nuclear Fuel and Waste Management Company, Sweden (2009).
[6] Casagrande, A., Fadum, R.E., Notes on Soil Testing for Engineering Purposes, Harvard University, Graduate School of Engineering (1940).
[7] Dueck, A., Börgesson, L., Johannesson, L.E.,Clay Technology AB., “Stress-strain relation of bentonite at undrained shear - Laboratory tests to investigate the influence of material composition and test technique,” SKB TR-10-32, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[8] Eriksson, P., Svensk Kärnbränslehantering AB., “Basic engineering of buffer production system,” SKB P-14-11, Swedish Nuclear Fuel and Waste Management Company, Sweden (2014).
[9] Heikki Raiko, VTT., Svensk Kärnbränslehantering AB., “ Design analysis report for the canister,” SKB TR-10-28, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[10] Holtz, R.D., Kovacs, W.D., An introduction to geotechnical engineering (1981).
[11] Japan Nuclear Cycle Development Institute, “H12 project to establish technical basis for HLW disposal in Japan - Supporting Report 2:Repository Design and Engineering Technology,” JNC TN1410 2000-003, Japan Nuclear Cycle Development Institute, Japan (2000).
[12] Johannesson, L.E., Clay Technology AB., “Compaction of full size blocks of bentonite for the KBS-3 concept – Initial tests for evaluating the technique,” SKB R-99-66, Swedish Nuclear Fuel and Waste Management Company, Sweden (1999).
[13] Johannesson, L.E., Jensen, L., Clay Technology AB., “Effects of water inflow into a deposition hole – Influence of pellets type and of buffer block manufacturing technique – Laboratory tests results,” SKB P-13-09, Swedish Nuclear Fuel and Waste Management Company, Sweden (2012).
[14] Karnland, O., Ollson, S., Nilsson, U., “Mineralogy and sealing properties of various bentonitesand smectite-rich clay material,” SKB TR-06-30, Swedish Nuclear Fuel and Waste Management Company, Sweden (2006).
[15] Kurosawa, S., Yui, M., Yoshikawa, H., “Experimental Study of Colloid Filtration by Compacted Bentonite,” Materials Research Society Symposium Proceedings, Materials Research Society, Vol. 465, No. SM1, pp.963-970 (1996).
[16] Madsen, F.T., Müller-Vonmoos, M., “The swelling behavior of clays,” Applied Clay science, Vol. 4, pp.143-156 (1989).
[17] Mesri, G., “Coefficient of Secondary Compression,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM1, pp.123-137 (1973).
[18] Pusch, R., Waste disposal in rock, Developments in Geotechnical Engineering 76, ELSEVIER, Amsterdam (1994).
[19] Svensk Kärnbränslehantering AB., “Design and production of KBS-3 repository,” TR-10-12, Swedish Nuclear Fuel and Waste Management Company, Sweden (2010).
[20] Svensk Kärnbränslehantering AB., “Long-term safety for the final repository for spent nuclear fuel at Forsmark,” TR-11-01, Swedish Nuclear Fuel and Waste Management Company, Sweden (2011).
[21] Taylor, D.W., Fundamentals of Soil Mechanics, Wiley, New York (1948).
[22] WNA, “Nuclear Power in Taiwan,” Retrieved from http://www.world-nuclear.org/information-library/country-profiles/others/nuclear-power-in-taiwan.aspx (2017, April).
[23] 経済産業省・資源エネルギー庁,「遠隔搬送・定置技術の開発」,第3章,(2011)。
[24] 台灣電力公司,「我國用過核子燃料最終處置初步技術可行性評估報告」,SNFD2009,(2010)。
[25] 台灣電力公司,「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段105年度成果報告(修訂二版)」,(2017)。
[26] 林伯聰,「國際高放射性廢棄物最終處置場址技術準則之研究」,行政院原子能委員會放射性物料管理局,委託研究計畫研究報告,(2013)。
[27] 陳文泉,「高放射性廢棄物深層地質處置緩衝材料回脹行為研究」,博士論文,國立中央大學土木工程學系,中壢(2000)。
[28] 陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
[29] 張瑞宏,「深地層處置設施緩衝材料 熱-水力-力學耦合模擬研析」,行政院原子能委員會放射性物料管理局,期末研究報告,(2015)。
[30] 黃偉慶,「用過核子燃料深層地質處置場近場緩衝材料耦合效應研析」,行政院原子能委員會放射性物料管理局,委託計畫研究期末報告,(2014)。
[31] 譚志豪,「黏土壓縮與壓密行為之研究」,博士論文,國立中央大學土木工程學系,中壢(2002)。
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明