博碩士論文 993402006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:18.226.172.230
姓名 鐘文煥(Wen-Huan Zhong)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鹼活化混合爐碴膠結材新拌性質與微觀組成之研究
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將還原碴與水淬爐石粉依照一定比例混合製成混合爐碴,再以鹼活化技術活化製成膠結材。針對此膠結材之新拌性質與微觀組成進行實驗分析,並就鹼活化混合爐碴膠結材流變行為、凝結狀態判定與微觀組成架構對於性質上影響進行探討。
研究顯示鹼活化混合爐碴膠結材新拌性質具有易受外力擾動而影響工作性與凝結狀態的特性,且於拌和後1小時即產生明顯的黏滯性,因於拌和完成後即行澆置並減少外力干擾。根據新拌性質分析,鹼活化混合爐碴膠結材以水膠比0.5拌和時,漿體初凝時間約為160分鐘,終凝時間約為540分鐘。另凝結時間判定方式應分為漿體與砂漿兩種系統進行檢測,特別是漿體凝結狀態應以流度值低於80%為參考基準點。抗壓強度方面,鹼活化混合爐碴漿體3天強度可達350 kgf/cm2,7天強度可達430 kgf/cm2,但28天強度發展減緩,僅有450 kgf/cm2。微觀組成方面,鹼活化混合爐碴膠結材會因配比不同而有些許的差異,但其主體仍以C-A-S-H膠體為發展基礎。因鹼活化混合爐碴膠結材將整體環境中的Al與Si、Ca組成長鏈狀的生成產物,與水泥將Al推至水化產物外部形成較具晶相的構造相比,鹼活化混合爐碴膠結材對於針對Al進行的化學侵蝕,具有較佳的抵抗力。
摘要(英) This study aims at the fresh property and microscopic composition of alkali-activated mixed slag. We mix ladle slag and blast furnace slag according to a certain proportion, and activate mixed slag by alkali-activated technology. The fresh property and microstructure of the cementing material are analyzed experimentally, and we discuss the rheological behavior, setting time, setting condition and microscopic composition of alkali-activated mixed slag cementing material.
This study shows that the fresh property of alkali-activated mixed slag cements is sensitive to workability and setting condition due to external disturbances, and has obvious viscosity at one hour after mixing. According to the analysis of the fresh property, when the paste is mixed by w/b ratio 0.5, the initial setting time is nearly 160 minutes and the final setting time is nearly 540 minutes. To determine the setting time should be divided into paste and mortar two systems for testing, especially the setting condition of paste should be flowability of less than 80% as a reference point. The compressive strength of alkali-activated mixed slag paste achieves 350 kgf / cm2 at 3 days, and it achieves 430 kgf / cm2 at 7 days. but the compressive strength at 28 days develop slowly, only 450 kgf / cm2. In terms of microscopic composition, the alkali-activated mixed slag cement will has a slight difference due to the different proportion, but the main microstructure is still based on the C-A-S-H gel. Alkali-activated mixed slag cement incorporates the Al ion with Si ion and Ca ion to form a long chain-like product. In contrast to ordinary Portland cement that expel Al out of the hydration products to form a more crystalline phase, alkali-activated mixed slag cement has better resistance to chemical attack, especially for the chemical attack of Al.
關鍵字(中) ★ 鹼活化混合爐碴膠結材
★ 新拌性質
★ 微觀組成
關鍵字(英) ★ Alkali-activated mixed slag cement
★ fresh property
★ microscopic composition
論文目次 圖目錄 III
表目錄 IX
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究內容 5
第二章 文獻回顧 6
2.1 電弧爐煉鋼與電弧爐碴 6
2.1.1電弧爐煉鋼 6
2.1.2 電弧爐碴 15
2.1.3電弧爐碴法規與再利用現況 20
2.2 鹼活化技術與無機聚合物 22
2.2.1 鹼活化技術介紹 22
2.2.2 常見鹼活化劑與鹼活化反應相關變數 24
2.2.3 鹼活化技術特性與影響成效之因素 25
2.2.4鹼活化膠結材硫酸鹽侵蝕 33
2.2.5 還原碴與爐石粉混合成混合爐碴之活化成效 34
2.2.6 無機聚合物 38
2.2.7 無機聚合物之反應機理 39
2.2.8 複合無機聚合物 42
2.2.9 複合無機聚合物之結構特性 43
2.3 鹼活化膠結材新拌性質 46
2.3.1 凝結時間 47
2.3.2 流變行為 50
2.3.3 孔隙結構 56
2.4 SEM、SSNMR及XRD於鹼活化混凝土上的應用 58
2.4.1 掃描式電子顯微鏡 (SEM) 58
2.4.2 固態核磁共振光譜儀 (SSNMR) 60
2.4.3 X光繞射分析儀 (XRD) 70
第三章 研究規劃 74
3.1實驗材料 74
3.2實驗儀器設備 77
3.3實驗方法與內容 87
3.3.1實驗目的與流程 87
3.3.2實驗方法 90
第四章 鹼活化混合爐碴新拌性質 99
4.1凝結時間 99
4.2流變行為 104
4.2.1 N4漿體 105
4.2.2 LS20漿體 115
4.2.3 LS10漿體 124
4.2.4 LS0漿體 134
4.2.5 鹼活化混合爐碴砂漿 148
4.2.6黏滯度分析 159
4.3抗壓強度發展 165
4.4空隙分析 181
4.5鹼活化混合爐碴新拌性質結論 184
第五章 鹼活化混合爐碴微觀分析 188
5.1掃描式電子顯微鏡(scanning electron microscopy,簡稱SEM) 188
5.1.1鹼活化混合爐碴SEM及EDS分析 192
5.2固態核磁共振光譜儀(solid-state nuclear magnetic resonance spectroscopy,簡稱SSNMR) 221
5.2.1 29Si固態核磁共振光譜分析 222
5.2.2 27Al固態核磁共振光譜分析 242
5.3 X光繞射分析儀(X-Ray Diffraction,簡稱XRD) 262
5.4微觀分析結論 266
第六章 結論與建議 270
6.1結論 270
6.2建議 273
參考文獻 275

參考文獻 潘致遠,「添加矽灰及爐石對水泥薄漿工程性質之影響研究」,國立中央大學土木工程研究所碩士學位論文(1999)。
蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,國立中央大學土木工程研究所碩士學位論文(2002)。
李宜桃,「鹼活化還原碴漿體之收縮及抑制方法研究」,國立中央大學土木工程研究所碩士學位論文(2003)。
郭硯華,「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,國立中央大學土木工程研究所碩士學位論文(2007)。
林湧昱,「以電弧爐還原碴製成複合無機聚合物之研究」,國立中央大學土木工程學系碩士論文 (2012)
吳明富,「還原碴-高爐石作為混合膠結材料之應用」,國立中央大學土木工程學系碩士論文 (2013)。
林偉量,「應用鹼活化技術製作全爐碴混凝土可行性研究」,國立中央大學土木工程學系碩士論文 (2014)。
陳筠莒,「固態核磁共振於經脫鋁及氟化修飾後之沸石鑑定及其機制探討」,國立中央大學化學研究所碩士論文 (2002)。
葉明珠,「應用固態核磁共振方法鑑定Mordenite沸石脫鋁反應後的酸性」,國立中央大學化學研究所碩士論文 (2001)。
吳承燿,「理論計算於骨架外之鋁-氟化合物之研究:19F及27Al NMR化學位移的研究」,國立台灣科技大學化學工程系碩士論文 (2006)。
楊宗叡,「鹼激發爐灰漿體材料微觀分析與工程性質研究」,國立台灣科技大學營建工程系博士論文 (2014)。
陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所博士論文(2009)。
黃暐晁,「預處理溫度對C-S-H膠體性質及其蒸氣養護後生成硬矽鈣石之影響」,國立成功大學資源工程研究所碩士論文(2010)。
陳俞君,「中孔洞複合材料之合成、分析與對二氧化碳吸附之研究」,國立交通大學材料科學與工程學系碩士論文 (2010)。
黃玄昇,「利用氫、矽、鋁之一維和二維固態核磁共振法研究沸石ZSM-5中之鋁原子位點及酸性位點之分布」,國立中山大學化學研究所碩士論文(2003)。
黃兆龍,「混凝土性質與行為」,詹氏書局,台北市(1999)
電弧爐煉鋼還原碴資源化應用技術手冊,經濟部工業局(2006)
高憲明,「多核固態核磁共振於孔洞材料結構鑑定之應用」,中國化學學刊,第六十二卷,第二期,第285–298頁 (2004)。
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Alkali activation of Australian slag cement. ” Cement and Concrete Research, 29 (1), pp. 113-120 (1999).
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), pp. 1367-1374 (2000).
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Resistance of alkali-activated salg concrete to alkali-aggregate reaction. ” Cement and Concrete Research, 31 (2), pp. 331-334 (2001).
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Sulfate attack on alkali-activated slag concrete.” Cement and Concrete Research, 32 (2), pp. 211-216 (2003).
Ben Haha, M., Lothenbach, B., Le Saout, G. and Winnefeld, F. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3” Cement and Concrete Research, Vol. 42, pp. 74-83 (2012).
Bernal, S.A., de Gutierrez, R. M. and Rodríguez, E. D., “Alkali-activated materials: cementing a sustainable future” Ingeniería y Competitividad, Vol. 15, NO. 2, pp. 211-223 (2013).
Brough, A. R., and Atkinson, A., “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure.” Cement and Concrete Research, 32 (6), pp. 865-879 (2002).
Chang, J. J., “A study on the setting characteristics of sodium silicate-activated slag pastes,” Cement and Concrete Research, 33, pp. 1005-1011 (2003).
Choi, S. J., Choi, J. I., Song, J. K., Lee, B. Y., “Rheological and mechanical properties of fiber-reinforced alkali-activated composite,” Construction and Building Materials, Vol. 96, pp. 112-118 (2015).
Collins, F., and Sanjayan, J. G., “Workability and mechanical properties of alkali-activated slag concrete.” Cement and Concrete Research, 29 (3), pp. 455-458 (1999)..
Collins, F., and Sanjayan, J. G., “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder.” Cement and Concrete Research, 29 (3), pp. 459-462 (1999).
Collins, F., and Sanjayan, J. G., “Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. ” Cement and Concrete Research, 29 (9), pp. 607-610 (1999).
Collins, F., and Sanjayan, J. G., “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), pp. 1401-1406 (2000).
Davidovits, J., “Synthetic mineral polymer compound of the
silicoaluminates family and preparation process”, USA Patent 4,472,199(1984).
Davidovits, J., “Process for obtaining a geopolymeric alumino-silicate and products thus obtained”, U.S.A. Patent 5,342,595(1994).
Davidovits, J., “Properties of Geopolymer Cement, proceedings First International Conference of Alkaline Cement and Concrete”, KIEV Ukraine, 131-149 (1994).
Davidovits, J., “ Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials”, U.S.A. Patent 5,539,140 (1996).
Davidovits, J., “Alkaline alumino-silicate geopolymeric matrix for
composite materials with fiber reinforcement and method for obtaining same”, USA Patent 5,798,307 (1998).
Fernandez-Jimenez, A., and Puertas, F., “The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate” Cement and Concrete Research, 32 (7), pp. 1029-1024 (2002).
Gebregziabiher, B. S., Thomas, R. and Peethamparan, S. “Very early-age reaction kinetics and microstructural development in alkali-activated slag,” Cement & Concrete Composites, Vol. 55, pp. 91-102 (2015).
Gu, Y. M., Fang, Y. H., You, D., Gong, Y. F. and Zhu, C. H. “Properties and microstructure of alkali-activated slag cement cured at below- and about-normal temperature,” Construction and Building Materials, Vol. 79, pp. 1-8 (2015).
Jimenez, A. F., Palomo, J. G. and Puertas, F. “Alkali-activated slag mortars mechanical strength behavior,” Cement and Concrete Research, Vol. 29, pp. 1313-1321 (1999).
Krizan, D., and Zivanovic, B. (2002). “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.” Cement and Concrete Research, 32 (8), pp. 1181-1188.
Li, C. M., Zhang, T. T. and Wang, L. J. “Mechanical properties and microstructure of alkali activated Pisha sandstone geopolymer composites,” Construction and Building Materials, Vol. 68, pp. 233-239 (2014).
Mehta, P. K. (1986). Concrete Structure, Properties, and materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Oh J. E., Moon J., Oh S. G., Clark S. M., and Monteiro P. J. M. “Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C–S–H(I), ” Cement and Concrete Research, Vol. 42, pp. 673-685 (2012).
Palacios, M., Puertas, F., “Effect of shrinkage-reducing admixtures on the of alkali-activated slag mortars and pastes.” Cement and Concrete Research, 37 (5), pp. 691-702 (2007).
Palomo, A., Grutzeck, M. W., and Blanco M. T., “Alkali-activated fly ashes A cement for the future.” Cement and Concrete Research, 29 ,pp. 1323-1329 (1999).
Phair, J. W., Van Deventer, J. S. J., “Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer” Minerals Engineering, 14(3), pp. 289-304 (2001).
Provis, J. L., Myers, R. J., White, C. E., Rose, V., Van Deventer, J. S. J., “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders,” Cement and Concrete Research, 42, pp. 855-864 (2012).
Purdon, A. O., “The action of alkalis on blast-furnace slag,” Journal of the Society of Chemical Industry, Vol. 59, No. 9, pp. 191-202 (1940).
Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., Rodriguez, J., “A model for the C-A-S-H gel formed in alkali-activated slag cements,” Journal of the European Ceramic Society, Vol. 31, pp. 2043-2056 (2011).
Puertas, F., Varga, C., Alonso, M. M., “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement & Concrete Composites, Vol. 53, pp. 279-288 (2014).
Rakhimova, N. R., Rakhimov, R. Z., Naumkina, N. I., Khuzin, A. F. and Osin, Y. N. “Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement,” Cement & Concrete Composites, Vol. 72, pp. 268-274 (2016).
Redden, R. and Neithalath, N. “Microstructure, strength, and moisture stability of alkali activated glass powder-based binders,” Cement & Concrete Composites, Vol. 45, pp. 46-56 (2014).
Shi, C., and Li, Y., “Investigation on some factors affecting the characteristics of alkali-activated phosphorus slag cement.” Cement and Concrete Research, 19 (4), pp. 527-533 (1989).
Shi, C., and Day, R. L., “A calorimetric study of early hydration of alkali slag cement.” Cement and Concrete Research, 25 (6), pp. 1333-1346 (1995).
Shi, C., and Day, R. L., “Some factors affecting early hydration of alkali slag cement.” Cement and Concrete Research, 26 (3), pp. 439- 447 (1996).
Shi, C., “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars.” Cement and Concrete Research, 26 (12), pp. 1789-1799 (1996).
Shi, C., and Xie, P. “Interface between cement paste and quartz sand in alkali-activated slag mortars.” Cement and Concrete Research, 28 (6), pp. 887-896 (1998).
Shi, C., Krivenko, P. V., Roy, D., Alkali-activated cements and concretes. Taylor & Francis, New York (2006).
Song, S., and Jennings, H. M., “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29 (2), pp. 159-170 (1999).
Sioulas, B., and Sanjayan, J.G., “The coloration phenomenon associated with slag blended cements.” Cement and Concrete Research, 31 (2), pp. 313-320 (2001).
Soleimani, M. A., Naghizadeh R., Mirhabibi A. R., And Golestanifard F. “The influence of phosphorus slag addition on microstructure and mechanical properties of metakaolin-based geopolymer pastes” Ceramics-Silikáty, wol. 57 (1), pp.33-38 (2013).
Türker, H. T., Balçikanli, M., Durmus, İ. H., Özbay, E. and Erdemir, M. “Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level,” Construction and Building Materials, Vol. 104, pp. 169-180 (2016).
Wang, S. D., Scrivener, K. L., and Pratt, P. L., “Factors affecting the strength of alkali-activated slag.” Cement and Concrete Research, 24 (6), pp. 1033-1043(1994).
Wang, S. D. and Scrivener, K. L. “Hydration products of alkali activated slag cement,” Cement and Concrete Research ,Vol. 25, NO. 3, pp. 561-571 (1995).
Wang, S. D. and Scrivener, K. L. “29Si and 27Al NMR study of alkali-activated slag,” Cement and Concrete Research, Vol. 33, pp. 769-774 (2003).
Yang, L. Y., Jia, Z. J. and Dai, J. G. “Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes,” Cement & Concrete Composites, Vol. 57, pp. 1-7 (2015).
Ye, H., and Radlińska, A., “Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag,” Journal of Advanced Concrete Technology, Vol. 14, pp. 245-260 (2016).
Yip, C. K., Lukey, G. C., Van Deventer, J. S. J.(2005). “The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of
alkaline activation” Cement and Concrete Research, 35, pp. 1688-1697,
Young, J. F., Mindess, S. and Darwin, D. (2002). Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Zhang, Z. H., Li, L. F., Ma X. and Wang, H. “Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement,” Construction and Building Materials, Vol. 113, pp. 237-245 (2016).
指導教授 黃偉慶 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明