參考文獻 |
潘致遠,「添加矽灰及爐石對水泥薄漿工程性質之影響研究」,國立中央大學土木工程研究所碩士學位論文(1999)。
蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,國立中央大學土木工程研究所碩士學位論文(2002)。
李宜桃,「鹼活化還原碴漿體之收縮及抑制方法研究」,國立中央大學土木工程研究所碩士學位論文(2003)。
郭硯華,「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,國立中央大學土木工程研究所碩士學位論文(2007)。
林湧昱,「以電弧爐還原碴製成複合無機聚合物之研究」,國立中央大學土木工程學系碩士論文 (2012)
吳明富,「還原碴-高爐石作為混合膠結材料之應用」,國立中央大學土木工程學系碩士論文 (2013)。
林偉量,「應用鹼活化技術製作全爐碴混凝土可行性研究」,國立中央大學土木工程學系碩士論文 (2014)。
陳筠莒,「固態核磁共振於經脫鋁及氟化修飾後之沸石鑑定及其機制探討」,國立中央大學化學研究所碩士論文 (2002)。
葉明珠,「應用固態核磁共振方法鑑定Mordenite沸石脫鋁反應後的酸性」,國立中央大學化學研究所碩士論文 (2001)。
吳承燿,「理論計算於骨架外之鋁-氟化合物之研究:19F及27Al NMR化學位移的研究」,國立台灣科技大學化學工程系碩士論文 (2006)。
楊宗叡,「鹼激發爐灰漿體材料微觀分析與工程性質研究」,國立台灣科技大學營建工程系博士論文 (2014)。
陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所博士論文(2009)。
黃暐晁,「預處理溫度對C-S-H膠體性質及其蒸氣養護後生成硬矽鈣石之影響」,國立成功大學資源工程研究所碩士論文(2010)。
陳俞君,「中孔洞複合材料之合成、分析與對二氧化碳吸附之研究」,國立交通大學材料科學與工程學系碩士論文 (2010)。
黃玄昇,「利用氫、矽、鋁之一維和二維固態核磁共振法研究沸石ZSM-5中之鋁原子位點及酸性位點之分布」,國立中山大學化學研究所碩士論文(2003)。
黃兆龍,「混凝土性質與行為」,詹氏書局,台北市(1999)
電弧爐煉鋼還原碴資源化應用技術手冊,經濟部工業局(2006)
高憲明,「多核固態核磁共振於孔洞材料結構鑑定之應用」,中國化學學刊,第六十二卷,第二期,第285–298頁 (2004)。
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Alkali activation of Australian slag cement. ” Cement and Concrete Research, 29 (1), pp. 113-120 (1999).
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), pp. 1367-1374 (2000).
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Resistance of alkali-activated salg concrete to alkali-aggregate reaction. ” Cement and Concrete Research, 31 (2), pp. 331-334 (2001).
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Sulfate attack on alkali-activated slag concrete.” Cement and Concrete Research, 32 (2), pp. 211-216 (2003).
Ben Haha, M., Lothenbach, B., Le Saout, G. and Winnefeld, F. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3” Cement and Concrete Research, Vol. 42, pp. 74-83 (2012).
Bernal, S.A., de Gutierrez, R. M. and Rodríguez, E. D., “Alkali-activated materials: cementing a sustainable future” Ingeniería y Competitividad, Vol. 15, NO. 2, pp. 211-223 (2013).
Brough, A. R., and Atkinson, A., “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure.” Cement and Concrete Research, 32 (6), pp. 865-879 (2002).
Chang, J. J., “A study on the setting characteristics of sodium silicate-activated slag pastes,” Cement and Concrete Research, 33, pp. 1005-1011 (2003).
Choi, S. J., Choi, J. I., Song, J. K., Lee, B. Y., “Rheological and mechanical properties of fiber-reinforced alkali-activated composite,” Construction and Building Materials, Vol. 96, pp. 112-118 (2015).
Collins, F., and Sanjayan, J. G., “Workability and mechanical properties of alkali-activated slag concrete.” Cement and Concrete Research, 29 (3), pp. 455-458 (1999)..
Collins, F., and Sanjayan, J. G., “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder.” Cement and Concrete Research, 29 (3), pp. 459-462 (1999).
Collins, F., and Sanjayan, J. G., “Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. ” Cement and Concrete Research, 29 (9), pp. 607-610 (1999).
Collins, F., and Sanjayan, J. G., “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), pp. 1401-1406 (2000).
Davidovits, J., “Synthetic mineral polymer compound of the
silicoaluminates family and preparation process”, USA Patent 4,472,199(1984).
Davidovits, J., “Process for obtaining a geopolymeric alumino-silicate and products thus obtained”, U.S.A. Patent 5,342,595(1994).
Davidovits, J., “Properties of Geopolymer Cement, proceedings First International Conference of Alkaline Cement and Concrete”, KIEV Ukraine, 131-149 (1994).
Davidovits, J., “ Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials”, U.S.A. Patent 5,539,140 (1996).
Davidovits, J., “Alkaline alumino-silicate geopolymeric matrix for
composite materials with fiber reinforcement and method for obtaining same”, USA Patent 5,798,307 (1998).
Fernandez-Jimenez, A., and Puertas, F., “The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate” Cement and Concrete Research, 32 (7), pp. 1029-1024 (2002).
Gebregziabiher, B. S., Thomas, R. and Peethamparan, S. “Very early-age reaction kinetics and microstructural development in alkali-activated slag,” Cement & Concrete Composites, Vol. 55, pp. 91-102 (2015).
Gu, Y. M., Fang, Y. H., You, D., Gong, Y. F. and Zhu, C. H. “Properties and microstructure of alkali-activated slag cement cured at below- and about-normal temperature,” Construction and Building Materials, Vol. 79, pp. 1-8 (2015).
Jimenez, A. F., Palomo, J. G. and Puertas, F. “Alkali-activated slag mortars mechanical strength behavior,” Cement and Concrete Research, Vol. 29, pp. 1313-1321 (1999).
Krizan, D., and Zivanovic, B. (2002). “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.” Cement and Concrete Research, 32 (8), pp. 1181-1188.
Li, C. M., Zhang, T. T. and Wang, L. J. “Mechanical properties and microstructure of alkali activated Pisha sandstone geopolymer composites,” Construction and Building Materials, Vol. 68, pp. 233-239 (2014).
Mehta, P. K. (1986). Concrete Structure, Properties, and materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Oh J. E., Moon J., Oh S. G., Clark S. M., and Monteiro P. J. M. “Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C–S–H(I), ” Cement and Concrete Research, Vol. 42, pp. 673-685 (2012).
Palacios, M., Puertas, F., “Effect of shrinkage-reducing admixtures on the of alkali-activated slag mortars and pastes.” Cement and Concrete Research, 37 (5), pp. 691-702 (2007).
Palomo, A., Grutzeck, M. W., and Blanco M. T., “Alkali-activated fly ashes A cement for the future.” Cement and Concrete Research, 29 ,pp. 1323-1329 (1999).
Phair, J. W., Van Deventer, J. S. J., “Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer” Minerals Engineering, 14(3), pp. 289-304 (2001).
Provis, J. L., Myers, R. J., White, C. E., Rose, V., Van Deventer, J. S. J., “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders,” Cement and Concrete Research, 42, pp. 855-864 (2012).
Purdon, A. O., “The action of alkalis on blast-furnace slag,” Journal of the Society of Chemical Industry, Vol. 59, No. 9, pp. 191-202 (1940).
Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., Rodriguez, J., “A model for the C-A-S-H gel formed in alkali-activated slag cements,” Journal of the European Ceramic Society, Vol. 31, pp. 2043-2056 (2011).
Puertas, F., Varga, C., Alonso, M. M., “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement & Concrete Composites, Vol. 53, pp. 279-288 (2014).
Rakhimova, N. R., Rakhimov, R. Z., Naumkina, N. I., Khuzin, A. F. and Osin, Y. N. “Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement,” Cement & Concrete Composites, Vol. 72, pp. 268-274 (2016).
Redden, R. and Neithalath, N. “Microstructure, strength, and moisture stability of alkali activated glass powder-based binders,” Cement & Concrete Composites, Vol. 45, pp. 46-56 (2014).
Shi, C., and Li, Y., “Investigation on some factors affecting the characteristics of alkali-activated phosphorus slag cement.” Cement and Concrete Research, 19 (4), pp. 527-533 (1989).
Shi, C., and Day, R. L., “A calorimetric study of early hydration of alkali slag cement.” Cement and Concrete Research, 25 (6), pp. 1333-1346 (1995).
Shi, C., and Day, R. L., “Some factors affecting early hydration of alkali slag cement.” Cement and Concrete Research, 26 (3), pp. 439- 447 (1996).
Shi, C., “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars.” Cement and Concrete Research, 26 (12), pp. 1789-1799 (1996).
Shi, C., and Xie, P. “Interface between cement paste and quartz sand in alkali-activated slag mortars.” Cement and Concrete Research, 28 (6), pp. 887-896 (1998).
Shi, C., Krivenko, P. V., Roy, D., Alkali-activated cements and concretes. Taylor & Francis, New York (2006).
Song, S., and Jennings, H. M., “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29 (2), pp. 159-170 (1999).
Sioulas, B., and Sanjayan, J.G., “The coloration phenomenon associated with slag blended cements.” Cement and Concrete Research, 31 (2), pp. 313-320 (2001).
Soleimani, M. A., Naghizadeh R., Mirhabibi A. R., And Golestanifard F. “The influence of phosphorus slag addition on microstructure and mechanical properties of metakaolin-based geopolymer pastes” Ceramics-Silikáty, wol. 57 (1), pp.33-38 (2013).
Türker, H. T., Balçikanli, M., Durmus, İ. H., Özbay, E. and Erdemir, M. “Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level,” Construction and Building Materials, Vol. 104, pp. 169-180 (2016).
Wang, S. D., Scrivener, K. L., and Pratt, P. L., “Factors affecting the strength of alkali-activated slag.” Cement and Concrete Research, 24 (6), pp. 1033-1043(1994).
Wang, S. D. and Scrivener, K. L. “Hydration products of alkali activated slag cement,” Cement and Concrete Research ,Vol. 25, NO. 3, pp. 561-571 (1995).
Wang, S. D. and Scrivener, K. L. “29Si and 27Al NMR study of alkali-activated slag,” Cement and Concrete Research, Vol. 33, pp. 769-774 (2003).
Yang, L. Y., Jia, Z. J. and Dai, J. G. “Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes,” Cement & Concrete Composites, Vol. 57, pp. 1-7 (2015).
Ye, H., and Radlińska, A., “Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag,” Journal of Advanced Concrete Technology, Vol. 14, pp. 245-260 (2016).
Yip, C. K., Lukey, G. C., Van Deventer, J. S. J.(2005). “The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of
alkaline activation” Cement and Concrete Research, 35, pp. 1688-1697,
Young, J. F., Mindess, S. and Darwin, D. (2002). Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Zhang, Z. H., Li, L. F., Ma X. and Wang, H. “Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement,” Construction and Building Materials, Vol. 113, pp. 237-245 (2016).
|