博碩士論文 100382013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.137.169.46
姓名 賴哲儇(Jhe-Syuan Lai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 整合空間資料與資料探勘演算法精進廣域崩塌潛勢評估
(Improving Regional Landslide Susceptibility Assessments by Integrating Geo-spatial Data and Data Mining Algorithms)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 高光譜影像立方體於特徵空間之三維紋理計算
★ 影像修補技術於牆面紋理影像遮蔽去除之應用★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 利用近景影像提高三維建物模型之細緻化等級★ 以地面及空載光達點雲重建複雜物三維模型
★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用★ 二次微分法於空載全波形光達之特徵萃取與地物分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 崩塌潛勢評估(landslide susceptibility assessment)是崩塌災害研究領域中基礎卻重要的任務之一。相關文獻指出空間資料(geo-spatial data)整合資料導向(data-driven)演算法評估廣域(regional)尺度的崩塌潛勢值得重視,尤其是資料探勘(data mining)演算法結合空間資料與事件型崩塌目錄(event-based landslide inventory)引起相當多的關注。另一方面,就崩塌機制而言,自然坡地崩塌可概分成源頭(source)、拖曳帶(trail)及堆積(deposition)等三個重要特徵,後兩者是崩塌的後續反應,統稱為Run-out。一般而言,從遙測影像中以自動或半自動方法偵測崩塌地並沒有分離源頭與Run-out,僅是評估崩塌的影響範圍。若要探討崩塌發生的主因,利用以上偵測成果建置崩塌潛勢模型恐造成偏差。
本研究發展空間資料結合資料探勘演算法(尤其是隨機森林演算法)評估多時期(multi-temporal)與事件型(event-based)崩塌潛勢流程,並以不同空間與時間樣本驗證,稱為space-與time-robustness verification。前者意指訓練與檢核資料(check data)皆出自於相同的資料集或事件;後者表示驗證樣本(本文又稱作預測資料,prediction data)來自於其他事件或資料集。此外,研究成果將比較決策樹、貝氏網路和羅吉斯迴歸等三種常用的崩塌潛勢方法,證實隨機森林演算法的成效。針對失衡的預測結果,例如極高漏授(omission)或誤授(commission),本研究以成本敏感度分析(cost-sensitive analysis)調整決策邊界(decision boundary)改善不同樣本比例模型的預測能力。北臺灣石門水庫集水區與南臺灣荖濃溪流域為本研究測試區,並蒐集數十種地形、環境、植被、降雨量、人造物等崩塌相關因子,以及利用變遷偵測(石門水庫案例)和人工數化(荖濃溪案例)方式製作崩塌目錄,作為研究資料。針對荖濃溪案例,本研究進一步探討崩塌目錄的取樣方式(sampling strategy)及Run-out對於崩塌潛勢模式化的影響。
以不同空間樣本驗證顯示,石門水庫的多時期與事件型崩塌潛勢模型以隨機森林(Random Forests)演算法產生之結果最佳,所有檢核精度皆大於0.93,優於決策樹(Decision Tree)、貝氏網路(Bayes Network)與羅吉斯迴歸(Logistic Regression)等方法。荖濃溪流域案例中,將Run-out視為獨立、崩塌、非崩塌等三個類別配合混合(hybrid)取樣策略,並以隨機森林演算法結合成本敏感度分析所建構的事件型崩塌潛勢模型可達0.7以上的檢核精度。
以不同時間樣本驗證顯示,隨機森林搭配成本敏感度分析能建構較佳且穩定的石門水庫多時期與事件型崩塌潛勢模型。崩塌潛勢評估為崩塌風險評估與管理架構的前端任務,因此本研究優先考量降低漏授誤差,而誤授誤差可藉由後續任務減低。進一步檢視模型,將實際崩塌樣本代入,其輸出潛感值較原始隨機森林演算法靠近高潛勢區間,提供較符合實況的預測。若以極度不均的崩塌與非崩塌樣本數量建構事件型崩塌潛勢模型會造成嚴重的過度擬合(over-fitting)。荖濃溪案例中,以隨機森林演算法結合成本敏感度分析與混合取樣策略建立崩塌潛勢模型,證實獨立Run-out的可行性。由於現有崩塌目錄大多未獨立Run-out類別 ,通常視為崩塌的一部份或除去(即非崩塌),故本研究測試此兩種作法對模式化的影響。成果顯示,視Run-out為非崩塌類別的精度較高,且成本敏感度分析提升5~10%驗證精度。根據上述模型產製的崩塌潛勢圖除了顯示成本敏感度分析與樣本比例的差異外,於荖濃溪流域案例更突顯Run-out類別對於崩塌潛勢評估的影響,因此本研究建議劃設崩塌目錄時應考慮之。
摘要(英) Landslide susceptibility assessment is one of the most fundamental and essential tasks in work related to the mitigation of damage caused by natural disasters. Continuing improvements in geo-spatial data have increased the veracity of data-driven approaches for evaluating regional landslide susceptibility. In particular, data mining algorithms with geo-spatial data and event-based landslide inventories have been proposed and discussed in recent years. From a geotechnical or geological point of view, there are three common features typical of natural terrain landslides, source, trail and deposition. The term run-out, generally used to describe the downslope displacement of failed geo-materials by landslides, is used in this study to represent the combination of the landslide trail and deposition. In general, the area of a landslide detected by means of automatic or semi-automatic algorithms from remotely sensed images might contain the run-out area, unless manually removed by the geologist or expert using aerial stereo-photos or other auxiliary data. However, the run-out area should be excluded in a strict definition of real landslides because it is caused by different mechanisms. This might produce biases and reduce the reliability of a landslide susceptibility model constructed from impure training data (i.e., landslide samples including run-outs).
The purpose of this study is to develop a procedure combing geo-spatial data and data mining algorithms (especially Random Forests) for multi-temporal and event-based landslide susceptibility assessments at a regional scale. This study also employs three commonly used algorithms (i.e., Decision Tree, Bayes Network and Logistical Regression) of landslide susceptibility assessments to compare with the Random Forests algorithm. Two strategies are investigated for model verification, i.e., space- and time-robustness. The former is designed to separate samples into training and checking data based on a single event or the same dataset. The latter is aimed at predicting subsequent or different landslide events or periods by constructing a landslide susceptibility model based on a specific event or period. This study also employs a cost-sensitive analysis to adjust the decision boundary of the data mining algorithms to improve the prediction capabilities for samples of equal and unequal sample proportions. The Shimen reservoir and Laonong river watersheds in northern and southern Taiwan are selected as the study sites. A total of more than ten landslide related factors in the two study sites were collected, including topographic, geo-environmental, vegetative, rainfall and man-made information. The landslide inventories used for training were generated by a change detection algorithm in the Shimen reservoir watershed case and produced manually in the Laonong river watershed case. This study also explores the influence of sampling strategies and run-out on modeling process based on the landslide inventory of the second study area which has a specific topological and complete relationship (i.e., polygon-based features).
For space-robustness verification, the experimental results obtained from multi-temporal and event-based landslide susceptibility assessments indicate that the Random Forests (RF) algorithm outperforms the Decision Tree, Bayes Network and Logistic Regression methods in the Shimen reservoir watershed case. Specifically, the RF accuracies are all better than 0.93. In the Laonong river watershed case, the event-based RF results based on the hybrid sampling strategy, where the run-out area is modeled as an individual, landslide or non-landslide class, also have accuracies higher than 0.7 with cost-sensitive analysis.
In terms of time-robustness verification, in most cases, the results of multi-temporal and event-based models for the Shimen reservoir watershed indicate that the Random Forests algorithm is more accurate and more stable for cost-sensitive analysis. Reducing omission errors is emphasized in this study because landslide susceptibility assessment is a forward part of landslide risk assessment and management framework. The commission error is expected to decrease by consequent works. To further examine the developed models, the landslide susceptibility distributions of true occurrence samples and the generated landslide susceptibility maps are compared with each other. The results to reveal that using cost-sensitive analysis can provide more reasonable results than the original RF algorithm. For generating landslide susceptibility map using Random Forests with cost-sensitive analysis, the results show that the multi-temporal models are unaffected by sample ratios but the extremely unbalanced sample ratio is not suggested for event-based modeling due to over-fitting issue. In the Laonong river watershed case, the results of RF with cost-sensitive analysis show that quantitative measures obtaining by treating the run-out area as an individual class are feasible. In addition, treating the run-out area as a non-landslide area can improve the User’s Accuracy (UA) for the landslide source by range from 5% to 10%. The landslide susceptibility maps generated for this study demonstrate the effects of cost-sensitive analysis and different sampling strategies as well as the impact of run-out areas on modeling in the Laonong river watershed case. According to the above results, this study suggests that the run-out area should be considered during landslide inventory generation and susceptibility modeling analysis.
關鍵字(中) ★ 崩塌潛勢
★ 資料探勘
★ 空間資料
★ 隨機森林
關鍵字(英) ★ Landslide Susceptibility
★ Data Mining
★ Geo-spatial Data
★ Random Forests
論文目次 摘要 I
ABSTRACT III
謝誌 VI
CONTENTS VII
LIST OF FIGURES X
LIST OF TABLES XVI
LIST OF ABBREVIATIONS XIX
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Research Objectives and Scope 4
1.3 Innovation and Contributions 7
CHAPTER 2 LITERATURE REVIEW 8
2.1 Landslide Risk Assessment and Management 8
2.2 Landslide Susceptibility Assessment 12
2.3 Data Mining Algorithms for Landslide Susceptibility Assessment 14
2.4 Geo-spatial Data based Landslide Inventory and Related Factors 16
2.5 Uncertainty Issues 18
2.5.1 Typical Features in Natural Landslides 19
2.5.2 Sampling Strategies 20
2.6 Summary 22
CHAPTER 3 STUDY SITES AND MATERIALS 24
3.1 Shimen Reservoir Watershed 24
3.2 Laonong River Watershed 32
CHAPTER 4 METHODOLOGY 38
4.1 Data Pre-processing and Spatial Analysis 41
4.2 Sampling Strategies 43
4.3 Data Mining Algorithms 45
4.3.1 Random Forests 46
4.3.2 Cost-sensitive Analysis 48
4.4 Algorithms for Comparison 49
4.5 Landslide Susceptibility Assessments, Verification and Mapping 51
CHAPTER 5 MULTI-TEMPORAL LANDSLIDE SUSCEPTIBILITY ASSESSMENTS 54
5.1 Space-robustness Verifications 54
5.2 Time-robustness Verifications 60
5.2.1 Verification with Multiple-event Samples 60
5.2.2 Verification with Single-event Samples 75
5.3 Summary 83
CHAPTER 6 EVENT-BASED LANDSLIDE SUSCEPTIBILITY ASSESSMENTS 91
6.1 Shimen Reservoir Watershed Case 91
6.1.1 Space-robustness Verifications 91
6.1.2 Time-robustness Verifications 99
6.1.3 Summary 107
6.2 Laonong River Watershed Case 112
6.2.1 Topographic Characteristics of the Landslide Source and Run-out Area 113
6.2.2 Space-robustness Verifications 115
6.2.3 Time-robustness Verifications 118
6.2.4 Summary 121
6.3 Summary 125
CHAPTER 7 CONCLUSIONS 126
7.1 Achievements 126
7.2 Limitations and Suggestions 131
BIBLIOGRAPHIES 133
APPENDIX 144
參考文獻 Abdel-Rahman, E.M., Mutanga, O., Adam, E., Ismail, R., 2014. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 45-59.
Aksoy, B., Ercanoglu, M., 2012. Landslide identification and classification by object-based image analysis and fuzzy logic: an example from the Azdavay region (Kastamonu, Turkey). Computers & Geosciences, 38: 87-98.
Ahmed, M.F., Rogers, J.D., 2015. Regional level landslide inventory maps of the Shyok River watershed, Northern Pakistan. Bulletin of Engineering Geology and the Environment, 75(2): 563-574.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P., 2002. Impact of mapping error on the reliability of landslide hazard maps. Natural Hazards and Earth System Sciences, 2: 3-14.
Bai, S., Lu, G., Wang, J., Zhou, P., Ding L., 2011. GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environmental Earth Sciences, 62: 139-149.
Belgiu, M., Dragut, L., 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31.
Berry, M.J., Linoff, G.S., 2000. Mastering data mining: the art and science of customer relationship management. 197 p., Wiley, New York, USA.
Brabb, E.E., 1984. Innovative approaches to landslide hazard mapping. The 4th International Symposium on Landslides, 16-21 September 1984, Toronto, Canada.
Brabb, E.E., 1991. The world landslide problem. Episodes, 14: 52-61.
Brabb, E.E., Pampeyan, E.H., Bonilla, M.G., 1978. Landslide susceptibility in San Mateo County, California. US Geological Survey Miscellaneous Field Studies Map, MF-360, Map at 1: 62,500 scale.
Breiman, L., 2001. Random forests. Machine Learning, 45: 5-32.
Brenning, A., 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Sciences, 5: 853-862.
Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B., 2012. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 96: 28-40.
Carrara, A., 1983. Multivariate models for landslide hazard evaluation. Mathematical Geology, 15(3): 403-426.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16: 427-445.
Carrara, A., Cardinali, M., Guzzetti, F., 1992. Uncertainty in assessing landslide hazard and risk. ITC Journal, 2: 172-183.
Carrara A., Carratelli, E.P., Merenda, L., 1977. Computer-based data bank and statistical analysis of slope instability phenomena. Zeitschrift für Geomorphologie, 21: 187-222.
Chan, J.C., Beckers, P., Spanhove, T., Borre, J.V., 2012. An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery. International Journal of Applied Earth Observation and Geoinformation, 18: 13-22.
Chang, C.P., Angelier, J., Huang, C.Y., Liu, C.S., 2001. Structural evolution and significance of a mélange in a collision belt: the Lichi Melange and the Taiwan arc-continent collision. Geological Magazine, 138(6): 633-651.
Chang, K.-T., Chiang, S.-H., Chen, Y.-C., Mondini, A.C., 2014. Modeling the spatial occurrence of shallow landslides triggered by typhoons. Geomorphology, 208: 137-148.
Chang, K.-T., Chiang, S.-H., Hsu, M.-L., 2007. Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology, 89: 335-347.
Chang, S.-F., 2013. Using slope-unit for landslide susceptibility assessment. Master Thesis, Graduate Institute of Applied Geology, National Central University (in Chinese with English abstract).
Chang, Y.-C., 2012. Landslide potential analysis: a case study in the Lao-Nong River watershed. Master Thesis, Department of Urban Planning and Spatial Information, Feng Chia University (in Chinese with English abstract).
Chen, C.-H., Tan, C.-H., Chi, S.-Y., Su, T.-W., 2011. An application of GIS-based deterministic model for assessment of regional rainfall-induced landslide potential-example of Kao-Ping river watershed. Journal of Chinese Soil and Water Conservation, 42(1): 1-11 (in Chinese with English abstract).
Chen, W.W., Shen, J.-P., Wang, J.-A., Tsai, F., 2015a. Scripting STABL with PSO for analysis of slope stability. Neurocomputing, 148: 167-174.
Chen, X., Vierling, L., Deering, D., 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98: 63-79.
Chen, Y.-C., Chang, K.-T., Lee, H.-Y., Chiang, S.-H., 2015b. Average landslide erosion rate at the watershed scale in southern Taiwan estimated from magnitude and frequency of rainfall. Geomorphology, 228: 756-764.
Chiang, S.-H., Chang, K.-T., Mondini, A.C., Tsai, B.-W., Chen, C.-Y., 2012. Simulation of event-based landslides and debris flows at watershed level. Geomorphology, 138: 306-318.
Chu, C.-M., Tsai, B.-W., Chang, K.-T., 2009. Integrating decision tree and spatial cluster analysis for landslide susceptibility zonation. World Academy of Science, Engineering and Technology, 35: 479-483.
Chung, Y.-C., 2009. Probe into the regional landslide susceptibility analysis- a case study in the Shimen reservoir catchment Area. Master Thesis, Graduate Institute of Geophysics, National Central University (in Chinese with English abstract).
Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., Lee, S., 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124: 12-23.
Choi, J., Oh, H.-J., Won, J.-S., and Lee, S., 2010. Validation of an artificial neural networks model for landslide susceptibility mapping. Environmental Earth Sciences, 60: 473-483.
Claessens, L., Heuvelink, G.B.M., Schoorl, J.M., Veldkamp, A., 2005. DEM resolution effects on shallow landslide hazard and soil redistribution modeling. Earth Surface Processes and Landforms, 30: 461-477.
Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2006. A GIS-based automated procedure for landslide susceptibility mapping by the condition analysis method: the Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50: 941-961.
Cruden, D.M., Varnes, D.J., 1996. Landslide types and processes. In: Turner, A.K., Schuster, R.L. (Eds.), Landslides Investigation and Mitigation. Special Report 247, Transportation Research Board, National Research Council. National Academy Press, Washington, DC, pp. 36-75.
Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., Poudyal, P., 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, 102: 496-510.
Dai, F.C., Lee, C. F., 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42: 213-228.
Dai, F.C., Lee, C.F., and Ngai, Y.Y., 2002. Landslide risk assessment and management: an overview. Engineering Geology, 64: 65-87.
Dai, F.C., Lee, C.F., 2003. A spatialtemporal probabilistic modeling of storm-induced shallow landslide using aerial photographs and Logistic regression. Earth Surface Processes and Landforms, 28: 527-545.
Das, B.M., 2000. Fundamentals of geotechnical engineering. Brooks/Cole, CA, U.S., 593 p.
Deng, Y. C., Tsai, F., Hwang, J.H., 2016. Landslide characteristics in the area of Xiaolin Village during Morakot typhoon. Arabian Journal of Geosciences, 9(5), 16 pages.
Desai, A., Jadav, P.M., 2012. An empirical evaluation of adaboost extensions for cost-sensitive classification. International Journal of Computer Applications, 44(13): 34-41.
Dietrich, E.W., Reiss, R., Hsu, M.L., Montgomery, D.R., 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9: 383-400.
Dilley, M., Chen, R., Deichmann, U., Lerner-Lam, A.L., Margaret, A., 2005. Natural disaster hotspots: a global risk analysis. Technical Report, The World Bank.
Donati, L., Turrini, M.C., 2002. An objective method to rank the importance of the factors predisposing to landslide with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Engineering Geology, 63(3-4): 277-289.
Dou, J., Chang, K.-T., Chen, S., Yunus, A.P., Liu, J.-K., Xia, H., Zhu, Z., 2015a. Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm. Remote Sensing, 7: 4318-4342.
Dou, J., Paudel, U., Oguchi, T., Uchiyama, S., Hayakawa, Y.S., 2015b. Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan. Terrestrial, Atmospheric and Oceanic Sciences, 26(2): 227-239.
Du, P., Samat, A., Waske, B., Liu, S., Li, Z., 2015. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 38-53.
Duncan, J.M., Wright, S.G., 1980. The accuracy of equilibrium methods of slope stability analysis. Engineering Geology, 16: 5-17.
Elith, J., Burgman, M.A., Regan, H.M., 2002. Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 157: 313-329.
Elkan, C., 2001. The foundations of cost-sensitive learning. Proc. of the Seventeenth International Joint Conference on Artificial Intelligence, 4-10 Aug., Seattle, USA.
Ercanoglu, M., Gokceoglu, C., 2004. Use of the fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 175: 229-250.
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., 1996. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11): 27-34.
Fell, R., 1994. Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31: 261-272.
Fell, R., Hartford, D., 1997. Landslide risk management. In: Cruden, D., Fell, R. (Eds.), Landslide Risk Assessment. Balkema, Rotterdam, pp. 51-109.
Feng, F.-L., Kao, J.-T., 1999. Applying Kriging interpolation model in precipitation properties mapping. NTU Experimental Forest Report, 13(2): 155-163 (in Chinese with English abstract).
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, P., 2008. Comparing landslide inventory maps. Geomorphology, 94: 268-289.
Gariano, S.L., Brunetti, M.T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C., Guzzetti, F., 2015. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, Southern Italy. Geomorphology, 228: 653-665.
Gemitzi, A., Falalakis, G., Eskioglou, P., Petalas, C., 2011. Evaluating landslide susceptibility using environmental factors, fuzzy membership functions and GIS. Global NEST, 13(1): 28-40.
Goetz, J.N., Brenning, A., Petschko, H., Leopold, P., 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers & Geosciences, 81: 1-11.
Goetz, J.N., Guthrie, R.H., Brenning, A., 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129: 376-386.
Gorsevski, P.V., Jankowski, P., 2008. Discerning landslide susceptibility using rough sets. Computer, Environment and Urban Systems, 32: 53-65.
Gorsevski, P.V., and Jankowski, P., 2010. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Computers & Geosciences, 36: 1005-1020.
Gu, B.-H., Hsiao, C.-Y., Lin, B.-S., Leung, W.-Y., Cheng, C.-T., 2009. To establish the predicting model of shallow landslide volume induced by heavy rainfall in Shin-Men Reservoir. In: Proc. of 13th Conference on Current Researches in Geotechnical Engineering in Taiwan, 26-28 Aug. 2009, I-Lan, Taiwan (in Chinese with English abstract).
Guo, L., Chehata, N., Mallet, C., Boukir, S., 2011. Relevance of airborne lidar and multispectral image data for urban scene classification using random forests. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1): 56-66.
Guzzetti, F., 2005. Landslide hazard and risk assessment. PhD Dissertation, Department of Geography, University of Bonn, Germany.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31: 181-216.
Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., Cardinali, M., 2006a. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6: 115-131.
Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.T., 2012. Landslide inventory maps: new tools for an old problem. Earth-Science Reviews, 112: 42-66.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M., 2006b. Estimating the quality of landslide susceptibility models. Geomorphology, 81: 166-184.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F., 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72: 272-299.
Harp, E.L., Keefer, D.K., Sato, H.P., Yagi, H., 2011. Landslide inventories: the essential part of seismic landslide hazard analyses. Engineering Geology, 122: 9-21.
Heckmann, T., Gegg, K., Gegg, A., Becht, M., 2014. Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Natural Hazards and Earth System Sciences, 14(2): 259-278.
Highland, L.M., Bobrowsky, P., 2008. The landslide handbook¬¬¬- a guide to understanding landslides. U.S. Geological Survey Circular 1325, 129 p.
Huang, J.-B., 2008. Application of geographical information systems and Logistic Regression on landslide potential assessment. Master Thesis, Department of Water Resources Engineering and Conservation, Feng Chia University (in Chinese with English abstract).
Huang, J.-C., Kao, S.-J., Hsu, M.-L., Lin, J.-C., 2006. Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan. Natural Hazards and Earth System Sciences, 6: 803-815.
Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslide, 11(2): 167-194.
Hussin, H.Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van Westen, C., Balteanu, B., 2016. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology, 253: 508-523.
Iovine, G.G.R., Greco, R., Gariano, S.L., Pellegrino, A.D., Terranova, O.G., 2014. Shallow-landslide susceptibility in the Costa Viola mountain ridge (southern Calabria, Italy) with considerations on the role of causal factors. Natural Hazards, 73(1): 111-136.
Kanungo, D.P., Arora, M.K., Sarkar, S., Gupta, R.P., 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85: 347-366.
Kavzoglu, T., Sahin, E.K., Colkesen, I., 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology, 192: 101-112.
Lainas, S., Sabatakakis, N., Koukis, G., 2016. Rainfall thresholds for possible landslide initiation in wildfire-affected area of western Greece. Bulletin of Engineering Geology and the Environment, 75(3): 883-896.
Lee, C.-T., 2008. GIS Application in Landslide Hazard Analysis. Pacific Neighborhood Consortium, Annual Conference 2008.
Lee, C.-T., 2009. Review and prospect on landslide and debris flow hazard analysis. Journal of the Taiwan Society of Public Works, 5(1): 1-29 (in Chinese with English abstract).
Lee, C.-T., Huang, C.-C., Lee, J.-F., Pan, K.-L., Lin, M.-L., Dong, J.J., 2008. Statistical approach to storm event-induced landslide susceptibility. Natural Hazards and Earth System Sciences, 8: 941-960.
Lee, S., 2007. Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, 52: 615-623.
Lee, S., Choi, J., Woo, I., 2004. The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosciences Journal, 8(1): 51-60.
Lee, S., Lee, M.-J., 2006. Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea. Advances in Space Research, 38: 2261-2271.
Lee, S., Ryu, J.-H., Lee, M.-J., Won, J.-S., 2006. The application of artificial neural networks to landslide susceptibility mapping at Janghung Korea. Mathematical Geology, 38(2): 199-220.
Li, H.-W., 2010. Coupling TRIGRS and TOPMODEL in shallow landslide prediction. Master Thesis, Graduate Institute of Applied Geology, National Central University (in Chinese with English abstract).
Lin, P.-W., 2010. The effect of cumulative horizontal seismic acceleration on landslide susceptibility with logistic regression model. Master Thesis, Department of Bioenvironmental Systems Engineering, National Taiwan University (in Chinese with English abstract).
Lin, W.-C., 2012. Application of satellite image classification technology in landslide potential analysis and construction of risk assessment model. Master Thesis, Land Management and Development Department, Chang Jung Christian University (in Chinese with English abstract).
Lin, Y.H., 2003. Application of neural networks to landslide susceptibility analysis. Master Thesis, Institute of Applied Geology, National Central University, 91 p (in Chinese with English abstract).
Lu, P., Bai, S., Casagli, N., 2015. Spatial relationships between landslide occurrences and land cover across the Arno river basin (Italy). Environmental Earth Sciences, 74(7): 5541-5555.
Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004. Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29: 687-711.
Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2008. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94: 379-400.
Mellor, A., Boukir, S., Haywood, A., Jones, S., 2015. Exploring issues of training data imbalance and mislabeling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 155-168.
Mettenicht, G., Hurni, L., Gogu, R., 2005. Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98: 284-303.
Miller, H.J., Han, J., 2001. Geographic data mining and knowledge discovery, pp.3-32. London: New York : Taylor & Francis.
Mondini, A.C., Chang, K.-T., 2014. Combing spectral and geoenvironmental information for probabilistic event landslide mapping. Geomorphology, 213: 183-189.
Mondini, A.C., Chang, K.-T., Yin, H.-Y., 2011a. Combing multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology, 134: 440-451.
Mondini, A.C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., Ardizzone, F., 2011b. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment, 115: 1743-1757.
Mondini, A.C., Marchesini, I., Rossi, M., Chang, K.-T., Pasquariello, G., Guzzetti, F., 2013. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology, 201: 135-147.
Mondini, A.C., Viero, A., Cavalli, M., Marchi, L., Herrera, G., Guzzetti, F., 2014. Comparison of event landslide inventories: the Pogliaschina catchment test case, Italy. Natural Hazards and Earth System Sciences, 14: 1749-1759.
Mosleh, A., 1986. Hidden sources of uncertainty: judgment in the collection and analysis of data. Nuclear Engineering and Design, 93: 187-198.
NDPPC, 2009. Disaster response disposition report of Typhoon Morakot. No. 74, Technical Report, National Disaster Prevention and Protection Commission, Taiwan, available at: http://www.nfa.gov.tw/uploads/2/201110130415Typhoon%20Morakot%20Disaster%20Responses%20Reports_74_20090908_1830.pdf (last access: 10 July 2017).
Nefeslioglu, H.A., Sezer, E., Gokceoglu, C., Bozkir, A.S., Duman, T.Y., 2010. Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Mathematical Problems in Engineering, 2010, 15 pp.
Nichol, J., Wong, M.S., 2005. Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing, 26 (9): 1913-1926.
Nourani, V., Pradhan, B., Ghaffari, H., Sharifi, S.S., 2014. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Natural Hazards, 71: 523-547.
Oh, H.-J., Lee, S., 2011. Cross-application used to validate landslide susceptibility maps using a probabilistic model from Korea. Environmental Earth Sciences, 64: 395-409.
Oh, H.-J., Pradhan, B., 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37: 1264-1276.
Ouyang, Y., Luo, S.M., Cui, L.H., Wang, Q., Zhang, J.E., 2011. Estimation of real-time N load in surface water using dynamic data-driven application system. Ecological Engineering, 37(4): 616-621.
Palamakumbure, D., Flentje, P., Stirling, D., 2015. Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia. Computers & Geosciences, 82: 13-22.
Park, D.W., Nikhil, N.V., Lee, S.R., 2013. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13: 2833-2849.
Peduzzi, P., 2010. Landslide and vegetation cover in the 2005 Northern Pakistan earthquake: a GIS and statistical quantitative approach. Natural Hazards and Earth System Sciences, 10: 623-640.
Petschko, H., Brenning, A., Bell, R., Goetz, J., Glade, T., 2014. Assessing the quality of landslide susceptibility maps – case study Lower Austria. Natural Hazards and Earth System Sciences, 14: 95-118.
Poli, S., Sterlacchini, S., 2007. Landslide representation strategies in susceptibility studies using weights-of-evidence modelling technique. Natural Resources Research, 16(2): 121-134.
Poudyal, C.P., Chang, C., Oh H.-J., Lee, S., 2010. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environmental Earth Sciences, 61: 1049-1064.
Pradhan, B., Lee, S., 2010a. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environmental Modelling and Software, 25: 747-759.
Pradhan, B., Sezer, E.A., Gokceoglu, C., Buchroithner, M.F., 2010b. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12): 4164-4177.
Pradhan, B., Lee, S., 2010b. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7: 13-30.
Pradhan, B., Lee, S., Buchroithner, M.F., 2010a. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, 34: 216-235.
Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., and Guzzetti, F., 2013. Improving predictive power of physical based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development, 6: 1367-1426.
Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P., 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67: 93-104.
Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A.C., Peruccacci, S., 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114: 129-142.
Saito, H., Nakayama, D., Matsuyama, H., 2009. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology, 109: 108-121.
Sakar, S., Kanungo, D.P., 2004. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70: 614-625.
Samodra, G., Chen, G., Sartohadi, J., Kasama, K., 2015. Generating landslide inventory by participatory mapping: an example in Purwosari Area, Yogyakarta, Java. Geomorphology, in press.
Schicker, R., Moon, V., 2010. Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161-162: 40-57.
Schott, J.R., Salvaggio, C., Volchok, W.J., 1988. Radiometric scene normalization using pseudo invariant features. Remote Sensing of Environment, 26:1-16.
Shang, X., Chisholm, L.A., 2014. Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7: 2481-2489.
Shao, Y., Campbell, J.B., Taff, G.N., Zheng, B., 2015. An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data. International Journal of Applied Earth Observation and Geoinformation, 38: 78-87.
Simon, N., Crozier, M., de Moiste, M., Rafek, A. G., 2013. Point based assessment: selecting the best way to represent landslide polygon as point frequency in landslide investigation. Electronic Journal of Geotechnical Engineering, 18: 775-784.
Song, K.-Y., Oh, H.-J., Choi, J., Park, I., Lee, C., Lee, S., 2012. Prediction of landslides using ASTER imagery and data mining models. Advances in Space Research, 49: 978-993.
Stumpf, A., Kerle, N., 2011. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115: 2564-2577.
Su, C., Wang, L., Wang, X., Huang Z., Zhang, X., 2015. Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine. Natural Hazards, 76: 1759-1779.
Suzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71: 303-321.
SWCB, 2011. Development and verification for landslide and debris flow dynamic prediction model (坡地崩塌及土石流動態預測模式開發及驗證). Report (in Chinese).
Tsai, F., Chen, L.C., 2007. Long-term landcover monitoring and disaster assessment in the Shiman reservoir watershed using satellite images. In: Proc. of 13th CeRES International Symposium on Remote Sensing, 29-30 Oct. 2007, Chiba, Japan.
Tsai, F., Hwang, J.-H., Chen, L.-C., Lin, T.-H., 2010. Post-disaster assessment of land-slides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Natural Hazards and Earth System Sciences, 10: 2179-2190.
Tsai, F., Lai, J.-S., Chen, W.W., Lin, T.-H., 2013. Analysis of topographic and vegetative factors with data mining for landslide verification. Ecological Engineering, 61: 669-677.
Tsai, F., Lai, J.-S., Lin, T.-H., 2012. Mitigating multi-temporal difference of NDVI by pseudo invariant features normalization for mountain region. In: Proc. of International Symposium on Remote Sensing, 10-12 Oct. 2012, Incheon, Korea.
Tsai, F., Lai, J.-S., Lu, Y.-H., 2016. Full-waveform LiDAR point cloud land cover classification with volumetric texture measures. Terrestrial, Atmospheric and Oceanic Sciences, 27(4): 549-563.
Tsou, C.-Y., Feng, Z.-Y., Chigira, M., 2011. Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127: 166-178.
Uprety, P., Yamazaki, F., Dell′ Acqua, F., 2013. Damage detection using high-resolution SAR imagery in the 2009 L′Aquila, Italy, Earthquake. Earthquake Spectra, 29(4): 1521-1535.
Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A., Hosseinali, F., 2010. A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers & Geosciences, 36: 1101-1114.
van den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., Poesen, J., 2009. Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Natural Hazards and Earth System Sciences, 9: 507-521.
van Westen, C.J., Castellanos, E., Kuriakose, S. L., 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Engineering Geology, 102: 112-131.
van Westen, C.J., Lulie, G.F., 2003. Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology, 54(1-2): 77-89.
van Westen, C.J., Soeters, R., Sijmons, K., 2000. Digital geomorphological landslide hazard mapping of the Alpage area, Italy. International Journal of Applied Earth Observation and Geoinformmation, 2(1): 51-59.
van Westen, C.J., van Asch, T.W.J., Soeters, R., 2006. Landslide hazard and risk zonation- why is it still so difficult?. Bulletin of Engineering Geology and the Environment, 65: 167-184.
Varnes, D.J., 1978. Slope movement types and process. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC., pp. 11-33.
Wan, S., 2009. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Engineering Geology, 108: 237-251.
Wan, S., 2013. Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environmental Earth Sciences, 68: 1349-1366.
Wan, S., Lei, T.C., Chou, T.Y., 2010. A novel data mining technique of analysis and classification for landslide problems. Natural Hazards, 52: 211-230.
Wang, H., Liu, G, Xu, W., Wang, G., 2005. GIS-based landslide hazard assessment: an overview. Progress in Physical Geography, 29(4): 548-567.
Wang, L.-J., Sawada, K., Moriguchi, S., 2013. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57: 81-92.
Wang, X., Niu, R., 2009. Spatial forecast of landslides in Three Gorges based on spatial data mining, Sensors, 9: 2035-2061.
Wang, X., Niu, R., 2010. Landslide intelligent prediction using object-oriented method. Soil Dynamics and Earthquake Engineering, 30: 1478-1486.
Wang, X., Zhang, L., Wang, S., Lari, S., 2014. Regional landslide susceptibility zoning with considering the aggregation of landslide points and the weights of factors. Landslides, 11(3): 399-409.
Witten, I.H., Frank, E., Hall, M.A., 2011. Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, San Francisco, USA, 605 p.
Wu, C.-H., Chen, S.-C., Chou, H.-T., 2011. Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, 123: 13-21.
Wu, C.Y., Chen, S.C., 2013. Integrating spatial, temporal, and size probabilities for the annual landslide hazard maps in the Shihmen watershed, Taiwan. Natural Hazards and Earth System Sciences, 13: 2353-2367.
Yilmaz, C., Topal, T., Lűtfi Sűzen, M., 2012.GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environmental Earth Sciences, 65: 2161-2178.
Yilmaz, I., 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Computers & Geosciences, 35: 1125-1138.
Yilmaz, I., 2010a. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial networks, and support vector machine. Environmental Earth Sciences, 61: 821-836.
Yilmaz, I., 2010b. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks, Environmental Earth Sciences, 60: 505-519.
Zhu, A.-X., Wang, R., Qiao, J., Qin, C.-Z., Chen, Y., Liu, J., Du, F., Lin, Y., Zhu, T., 2014. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214: 128-138.
指導教授 蔡富安(Fuan Tsai) 審核日期 2018-3-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明