摘要(英) |
Now, the network of freeway is being completed. In presupposition that forecasting results are exact. The travel time forecasting information not only can let passengers directly realize the situation of traffic flow they will in, but also can let the traffic management make a suitable decision to fit this situation and decide a proper route of passenger’s needs to make the best use of the network of freeway in the future.
Because that our link of freeway hasn’t use Automatic Vehicle Identification system to collect travel time data, so this study focus on the weekday’s situation of traffic flow, using simulation to gain travel time data and considering all kinds of related influential factors, such as the updating time period of information, distance between two neighborly collecting stations, and AVI rate. Furthermore, Using four forecasting models, such as single exponential smoothing method, Holt’s exponential smoothing method, autoregressive integrated moving average method, and back-propagation network, to test and analyze if forecasting results are exact. Hoping to offer practicable and exact travel time forecasting information, and using it as the basis of how passengers choose their routes.
From the result of all kinds of test, we can know that it can have better forecast effect when information update takes five minutes, keeps one kilometer between two neighborly collecting stations. Besides, in four travel time forecasting models. HES forecast effect is the worst, and other’s forecast effects are almost the same but we still can have better forecast effect much easily from BPN forecasting model. Lastly, we can regard the result of all kinds of test as reference which is related to the traffic management. |
參考文獻 |
1. 鄭建勳,「動態地磅結合自動車輛辨識系統於國內收費道路應用之可行性研究」,台灣大學土木工程研究所碩士論文,民國88年6月。
2. 交通部運輸研究所,「自動車輛辨識系統原理及其應用之研究」,民國82年11月。
3. 交通部運輸研究所,「智慧型運輸系統(ITS)發展演進與相關技術之探討」,民國87年11月。
4. 鄭志平,「應用衝擊波理論在高速公路封閉部分車道時旅行時間推算之研究」,成功大學交通管理科學研究所碩士論文,民國82年7月。
5. 張修榕,「高速公路旅行時間預測之研究」,中央大學土木工程研究所碩士論文,民國90年6月。
6. 林士傑,「高速公路旅行時間預測模式之研究-類神經網路之應用」,成功大學交通管理科學研究所碩士論文,民國90年6月。
7. 李季森,「應用探測車法預測高速公路旅行時間」,中央大學土木工程研究所碩士論文,民國91年7月。
8. 李穎,「類神經網路應用於國道客運班車旅行時間預測模式之研究」,成功大學交通管理科學研究所碩士論文,民國91年6月。
9. 呂孟學,「應用類神經網路於即時停車需求預測之研究」,中央大學土木工程研究所碩士論文,民國89年6月。
10. 曾芳美,「時間數列預測方法之整合與比較研究」,交通大學工業工程與管理學系科技管理組博士論文,民國87年9月。
11. 陳奕志,「含類神經網路變換車道的高速公路微觀車流模擬模式之研究」,成功大學交通管理科學研究所碩士論文,民國87年6月。
12. Stephen A. DeLurgio原著,許純君譯,「預測的原則與應用」,台灣西書出版社,民國88年3月初版。
13. 葉怡成,類神經網路模式應用與實作,儒林書局,第7版,民國91年3月
14. 林茂文,時間數列分析與預測,民國72年9月印行。
15. Bruce Hellinga, Geoff Knapp,“Automatic Freeway Incident Detection using Travel Time Data from AVI Equipped Vehicles”, 6th World Congress on Intelligent Transport Systems, Toronto, Canada, 1999.
16. Yoshikazu Ohba, Hideki Ueno, Masao Kuwahara,“Travel Time Information Calculation Method for Expressway Using Toll Collection System Data”, 6th World Congress on Intelligent Transport Systems, Toronto, Canada, 1999.
17. D. Park, L. Rilett,“Forecasting Multiple-Period Freeway Link Travel Times Using Modular Neural Networks”, Transportation Research Board Annual Meeting, 1998.
18. Chi-Hyun Shin, Seong-Ho Kim,“Development of Low-cost AVI System and a Travel Time Estimation Algorithm for the Olympic Expressway Traffic Management System in Seoul”, 5th ITS World Congress, 1998.
19. Ken’ichiro Yamane, Takumi Fushiki, Masataka Furuta, Yutaka Sano,“Development of Travel Time Estimation System Combining License Plate Recognition AVI and Ultrasonic Vehicle Detectors”, 6th World Congress on Intelligent Transport Systems, Toronto,Canada, 1999.
20. Laurence R. Rilett, Dongjoo Park, Byron Gajewski,“Estimating Confidence Interval for Freeway Corridor Travel Time Forecasts”, 6th World Congress on Intelligent Transport Systems, Toronto, Canada, 1999.
21. Tadaaki Tanaka, Masayoshi Sasaki, Hiroyuki Sugimura,“Study on Fluctuations in Link Travel Times due to Traffic Regulation in Areas Peripheral to Regulation”, 6th World Congress on Intelligent Transport Systems, Toronto,Canada, 1999.
22. Bruce Hellinga, Liping Fu,“Route Selection Considering Travel Time Variability”, 6th World Congress on Intelligent Transport Systems, Toronto,Canada, 1999.
23. Benjamin Coifman,“Vehicle Re-Identification(VRI) and Travel Time Measurement(TTM) in Real-Time on Freeways Using Existing Loop Detector Intrastructure”, Transportation Reasearch Record 1643,pp.181-191,1998.
24. Mei Chen, Steven I.J. Chien,“Dynamic Freeway Travel Time Prediction Using Probe Vehicle Data: Link-based vs. Path-based”, TRB Paper No. 01-2887, 80th Annual Meeting, January 7-11, 2001.
25. Lianyu Chu, Zhaosheng Yang, Jun-Seok Oh,“Development of a Synthetic Link Travel Time Prediction Model for ATMIS Applications”, TRB Annual Meeting, 2001.
26. J.W.C. van Lint, S.P. Hoogendoorn, H.J. van Zuylen,“State Space Neural Networks for Freeway Travel Time Prediction”.
27. Fulin Zhu,“Locations of AVI System and Travel Time Forecasting”, Virginia Polytechnic Institute and State University Press, Blacksburg Virginia, 2000.
28. Adolf D.May,“Traffic Flow Fundamentals”, Prentice Hall,1990. |