參考文獻 |
李志昕、洪景山,2011:區域系集預報系統研究:物理參數化擾動。大氣科學,39,95-116。
洪景山、曹嘉宏,2011:利用Cressman客觀分析法於網格化台灣自動雨量觀測資料之探討。大氣科學,39,201-214。
簡芳菁、洪玉秀,2010:梅雨季西南氣流氣候平均與個案之數值研究。大氣科學,38,237-267。
周俊宇,2012: 西南氣流實驗(IOP8個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較。中央大學大氣物理研究所碩士論文。
陳立昕, 2017: 利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8 個案分析。中央大學大氣物理研究所碩士論文。
邵彥銘,2015: 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析。國立中央大學大氣物理所碩士論文。
Ancell, B. C., C. F. Mass and G. J. Hakim, 2011: Evaluation of surface analyses and forecasts with a multiscale ensemble Kalman filter in regions of complex terrain. Mon. Wea. Rev., 139, 2008-2024.
Chang, W.-Y., W.-C. Lee and Y.-C. Liou, 2015: The Kinematic and Microphysical Characteristics and Associated Precipitation Efficiency of Subtropical Convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317-340.
Chung, K.-S., W. G. Chang, L. Fillion and M. Tanguay, 2013: Examination of situation-dependent background error covariances at the convective scale in the context of the ensemble Kalman filter. Mon. Wea. Rev., 141, 3369–3387.
Davis, C. A. and W.-C. Lee 2012: Mesoscale Analysis of Heavy Rainfall Episodes from SoWMEX/TiMREX. J. Atmos. Sci., 69, 521-537.
Dawson Ⅱ, D. T., M. Xue, J. A. Milbrandt and M. K. Yau, 2010: Comparison of Evaoration and Cold Pool Development between Single-Moment and Multimoment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms. Mon. Wea. Rev., 138, 1152–1171.
Dowell, D. C., L. J. Wicker and C. Snyder, 2011: Ensemble Kalman Filter Assimilation of Radar Observations of the 8 May 2003 Oklahoma City Supercell: Influences of Reflectivity Observations on Storm-Scale Analyses. Mon. Wea. Rev., 139, 272-294.
Duda, J. D., X. Wang, F. Kong and M. Xue, 2014: Using Varied Microphysics to Account for Uncertainty in Warm-Season QPF in a Convection-Allowing Ensemble. Mon. Wea. Rev., 142, 2198-2219.
Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461–2480.
Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 51–64.
Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627.
──, ──, and ──, 2004: Precipitation and Evolution Sensitivity in Simulated Deep Convective Storms: Comparisons between Liquid-Only and Simple Ice and Liquid Phase Microphysics. Mon. Wea. Rev., 132, 1897–1916.
Tapiador, F. J., W.-K. Tao, J. J. Shi, C. F. Angelis, M. A. Martinez, C. Marcos, A. Rodriguez, A. Hou, 2012: A Comparison of Perturbed Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in
Spain. J. Appl. Meteor., 51, 489-504.
Hacker, J. P. and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screenheight observations in a parameterized PBL. Mon. Wea. Rev., 133, 3260-3275.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysics scheme. Mon. Wea. Rev., 132, 103–120.
──, and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme. Journal of the Korean Meteorological society, 42, 129-151.
Houtekamer, P. L., L. Lefaivre, and J. Derome, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.
Jacques, D., W. G. Chang, S. J. Baek, T. Milewski, L. Fillion, K. S. Chung and H. Ritchie, 2017: Developing a convective-Scale EnKF data assimilation system for the Canadian MEOPAR Project. Mon. Wea. Rev., 145, 1473-1494.
Jones, T. A. and D. J. Stensrud, 2015: Assimilating Cloud Water Path as a Function of Model Cloud Microphysics in an Idealized Simulation. Mon. Wea. Rev., 143, 2052–2081.
Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Wea. Rev., 138, 1587–1612.
Lin, Y.-L, R. D. Farley, and H. D. Orville, 1983: Bulk parametrization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameter-ization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.
——, and ——, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.
Min, K.-H., S. Choo, D. Lee and G. Lee, 2015: Evaluation of WRF Cloud Microphysics Schemes Using Radar Observations. Weather Forecast, 30, 1571-1589.
Morrison, H., J. A. Curry and V.I. Khvorostyanov, 2005: A New Double-Moment Mi-crophysics Parameterization for Application in Cloud and Climate Models. Part Ⅰ: Description. J. Atmos. Sci., 62, 1665-1677.
──, G. Thompson and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing straitiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.
──, and J., Milbrandt, 2011: Comparison of Two-Moment Bulk Microphysics Schemes in Idealized Supercell Thunderstorm Simulations. Mon. Wea. Rev., 139, 1103–1130.
Poterjoy, J. and F. Zhang, 2011: Dynamics and Structure of Forecast Error Covariance in the Core of a Developing Hurricane. J. Atmos. Sci., 68, 1586-1606.
Putnam, B. J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The Analysis and Pre-diction of Microphysical States and Polarimetric Radar Variables in a Mesoscale Convective System Using Double-Moment Microphysics, Multinetwork Radar Data, and the Ensemble Kalman Filter. Mon. Wea. Rev., 141, 141-162.
──, ──, ──, G. Zhang and F. Kong, 2017: Simulation of Polarimetric Radar Variables from 2013 CAPS Spring Experiment Storm-Scale Ensemble Forecasts and Evaluation of Microphysics Schemes. Mon. Wea. Rev., 145, 49-73.
──, ──, ──, N. Snook, and G. Zhang, 2017: Ensemble Probabilistic Prediction of a Mesoscale Convective System and Associated Polarimetric Radar Variables Using Single-Moment and Double-Moment Microphysics Schemes and EnKF Radar DA. Mon. Wea. Rev., 145, 2257-2279.
Rowe, A. K., S. A. Rutledge, and T. J. Lang, 2011: Investigation of Microphysical Processes Occurring in Isolated Convection during NAME. Mon. Wea. Rev., 139, 424-443.
Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the ‘‘seeder-feeder’’ process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.
Snyder, C. and F. Zhang, 2003: Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 131, 1663-1677.
Tao, W.-K., J. Simpson and M. Mccumber, 1989: An Ice-Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235.
──, and ──, 1993: Goddard Cumulus Ensemble Model. Part Ⅰ: Model Description. Terr. Atmos. Oceanic Sci., 4, 19-54.
──, and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97–137.
──, J. J. Shi, S. S. Chen, S. Lang, P.-L Lin, S.-Y Hong, C. P.-Lidard and A. Hou, 2011: The Impact of Microphysical Schemes on Hurricane Intensity and Track. Asia-Pacific J. Atmos., 47, 1-16.
Tapiador, F. J., W.-K. Tao, J. J. Shi, C. F. Angelis, M. A. Martinez, C. Marcos, A. Rodriguez and A. Hou, 2012: A Comparison of Perturbed Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in
Spain. J. Appl. Meteor., 51, 489-504.
Tu, C. C., Y. L. Chen, C. S. Chen, P. L. Lin and P. H. Lin, 2014: A comparison of two heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment(TiMREX) 2008. Mon. Wea. Rev., 142, 2436-2463.
──, Y. L. Chen, S. Y. Chen, Y. H. Kuo and P. L. Lin, 2017: Impacts of Including Rain Evaporative Cooling in the Initial Conditions on the Prediction of a Coastal Heavy Rainfall Event during TiMREX. Mon. Wea. Rev., 145, 253-277.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An Orography-associated extreme rainfall event during TiMREX: Initiation, Storm Evolution, and Maintenance, Mon. Wea. Rev., 140, 2555-2574.
── and ──, 2015: Convective Intensity, Vertical Precipitation Structures, and Microphysics of Two Contrasting Convective Regimes During the 2008 TiMREX. J. Geophys. Res. Atmos., 120, 4000-4016.
Xue, M., Y. Jung and G. Zhang, 2010: State Estimation of
Convective Storms with a Two-Moment Microphysics Scheme and an Ensemble Kalman Filter: Experiments with Simulated Radar Data. Q. J. R. Meteorol. Soc., 136, 685-700.
Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang and C. S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.
Zhang, F., 2002: Mesoscale Predictability of the “Surprise” Snowstorm of 24-25 Janu-ary 2000. Mon. Wea. Rev., 130, 1617-1632.
──, C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173-1185.
──, 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133, 2876-2893. |