博碩士論文 105327018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.149.255.60
姓名 黃泓睿(Hung-Jui Huang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 機器學習應用於氫化非晶矽(a-Si:H)鈍化膜之即時電漿化學氣相沉積製程監控
(Machine learning of In-situ plasma monitoring in PECVD deposited amorphous (a-Si:H) passivation film)
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究
★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究利用自製電漿輔助化學氣相沉積(PECVD)引入矽甲烷(SiH4)、氫氣(H2)、氬氣(Ar)製備超薄氫化非晶矽本質鈍化層(< 10 nm)於矽基板上,利用光放射光譜端點檢測透過電漿診斷即時提供電漿變化趨勢大幅減少製程測試實驗,而縮短製程開發成本。
根據研究氫稀釋比(R= H2 / SiH4)對沉積a-Si:H,研究過程中,利用光放射光譜監測電漿全普光譜量測,其中SiH*強度代表機器學習中的主成分分析法(PCA)結合工業4.0趨勢,使得製程更加穩定。即時電漿時序光譜發現電漿解離瞬間(暫態)之SiH*強度與RF的輸入電壓及反射電壓間的關係,同時由Z-Scan看出腔體阻抗質和相位,並搭配光放射光譜儀與四極柱質譜儀做即時性的電漿診斷分析,找出電漿組態對於阻抗匹配間的關係,藉由此結論,研究出改善薄膜品質的主要關鍵,進而更有效率的縮短製程時間。其中量測薄膜性質如:FTIR(氫含量)、lifetime(載子生命週期)等,並在案例研究中得到驗證。
研究結果顯示,當主成分分析法(PCA)結果當Health Value超過0.2,載子生命週期可超過600us或是更高。再由史密斯圓的匹配過程,當暫態的時間越短約莫1-2秒,也可獲得更好的載子生命週期更高達750us,上述研究及分析結果可獲得適當之製程參數和阻抗匹配條件於本PECVD系統中。
摘要(英) The use of self-made plasma-assisted chemical vapor deposition (PECVD) to introduce indium methane (SiH4), hydrogen (H2), and argon (Ar) to produce an ultra-thin hydrogenated amorphous germanium passivation layer (< 10 nm) on a germanium substrate, The use of optical emission spectroscopic end-point detection to provide immediate plasma changes through plasma diagnostics drastically reduces process testing experiments and reduces process development costs.
According to the study of hydrogen dilution ratio (R=H2/SiH4), a-Si:H was deposited. During the study, the plasma spectroscopic measurement was performed by light emission spectroscopy, and the SiH* intensity represented the principal component analysis in machine learning ( PCA) combined with the trend of industry 4.0, making the process more stable. The instantaneous plasma time-series spectrum reveals the relationship between the SiH* intensity of the plasma dissociation instant (transient) and the RF input voltage and reflected voltage. At the same time, the Z-Scan sees the cavity impedance and phase, and is matched with the light emission spectrometer. The quadrupole mass spectrometer performs an immediate plasma diagnostic analysis to find out the relationship between the plasma configuration and the impedance matching. From this conclusion, the main key to improve the film quality is studied, and the process time is shortened more efficiently. Among them, film properties such as FTIR (hydrogen content) and lifetime (carrier life cycle) were measured and verified in case studies. The results of the study show that when the PCA results are greater than 0.2, the carrier lifetime can exceed 600 us or more. By Smith′s matching process, when the transient time is shorter about 1-2 seconds, a better carrier lifetime can be obtained up to 750us. The above research and analysis results can obtain appropriate process parameters and impedance matching conditions in this PECVD system.
關鍵字(中) ★ 電漿輔助化學氣相沉積
★ 氫化非晶矽鈍化膜
★ 主成分分析
★ 機器學習
★ 史密斯圖
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
第一章緒論 1
1-1 前言 1
1-1 研究動機 3
第二章 基本理論與文獻回顧 4
2-1 化學氣相沉積(CVD) 4
2-1-1薄膜沉積原理 5
2-3 矽薄膜沉積原理與介紹 10
2-3-1氫化非晶矽薄膜介紹 10
2-3-2矽晶鈍化原理與機制 17
2-4 載子生命週期復合機制 22
2-5 電漿診斷 27
2-5-1 光放射光譜(OES) 27
2-5-2 四極柱質譜(QMS) 29
2-5-3 射頻劑量器(Z-Scan) 31
2-6 電漿大數據分析 33
2-6-1 主成分分析(PCA) 33
第三章 研究方法 35
3-1 實驗流程 35
3-2 實驗方法 36
3-2-1 參數設定 36
3-2-2 試片清洗步驟 37
3-3 實驗裝置與量測 38
3-3-1 射頻電漿輔助化學氣相沉積(Radio-Frequency Plasma Enhanced Chemical Vapor Deposition,RF-PECVD) 38
3-3-2 光電導生命週期量測儀(Photoconductance lifetime tester) 42
3-3-3 傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR) 44
3-3-4 探針式輪廓儀(Alpha Step) 46
第四章 實驗結果與討論 47
4-1 機器學習分析製程起始時間對鈍化膜之影響分析 49
4-1-1 製程起始時間對鈍化薄膜之影響分析 51
4-1-2 不同起始時間對鈍化薄膜之OES分析 53
4-1-3 PCA分析兩實驗組對鈍化薄膜之 57
4-2 阻抗匹配對鈍化薄膜之影響分析 61
4-2-1 TEM拍攝鈍化層薄膜品質 61
4-2-2腔體阻抗與OES光譜偵測 63
4-2-3 電漿匹配 66
4-2-4 生命載子周期與腔體阻抗驗證 70
4-1-4 FTIR驗證鈍化層薄膜品質 71
第五章 結論 73
參考文獻 74
參考文獻 [1] 黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[4] ITRPV Edition 2016_Revision 1,2016,http://www.itrpv.net/Home/.
[5] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[6] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[7] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
[8] Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[9] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年。
[10] H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[11] Triska, A., D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[12] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[13] John Robertson. “Growth mechanism of hydrogenated amorphous silicon”, Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
[14] A. Matsuda, "Microcrystalline silicon. Growth and device application" , Journal of Non-Crystalline Solids, Vol. 338, pp. 1-12, Jun 15 , 2004
[15] A. Matsuda, et al. “Solar Energy & Solar Cells”, 2003,78,3
[16] Akihisa Matsuda, “Thin-Film Silicon — Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
[17] A. Triska, D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[18] Yao Ruohe, et al. “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[19] 吳培慎,「利用PECVD製備超薄本質氫化非晶矽(a-Si:H)薄膜之優質鈍化成效研究」,國立中央大學,碩士論文,2015年。
[20] 張濟忠,現代薄膜技術,冶金工業出版社,2009年。
[21] M. Wakaki, et al.著,周海憲、程云芳譯,光學材料手冊,化學工業出版社,2010年。
[22] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A,Vol. 26(4), pp. 683-687, 2008.
[23] J. Sritharathikhun, et al., “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[24] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the hetero interface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[25] F. Zignani, et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films,Vol. 451–452, pp. 350–354, 2004.Vol. 451–452, pp. 350–354, 2004.
[26] U. Kroll, J. Meier,A. Shah, S. Mikhailov, and J, Weber, J. Appl. Phys. 80,4971 , 1996.
[27] N. H. Nickel: Hydrogen in semiconductor II, 61 , 1999.
[28] M. S. Jeon and K. Kamisako “Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells”, transactions on electrical and electronic materials, vol. 10, no. 3, june 25, 2009.
[29] M.H. Brodsky, Q. Li, B.C Pan, and Y. Yoon, Phys.1 Rev. B, 57 , 2253 , 1998.
[30] Taguchi, M., et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer." Ieee Journal of Photovoltaics 4(1): 96-99, 2014.
[31] Jia Ge, et al., “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy”, JOURNAL OF APPLIED PHYSICS 113, 234310 , 2013.
[32] D. L. Meier, et al., “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[33] T. S. Horanyi, et al, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[34] S. K. Ram, et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
[35] S. Y. Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[36] H. L. Hsiao, et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999
[37] M. Takai, et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
[38] M. Jeon , et al., “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique”, Current Applied Physics 10 S237–S240 , 2010.
[39] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學物理研究所碩士論文,民國九十四年。
[40] P. Klement, et al., "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl. Phys. Lett., Vol. 102 (2013).
[41] P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[42] 劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討」,國立中央大學,碩士論文,民國一百零三年。
[43] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係,大學物理,28卷,3期,民國九十八年。
[44] 林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 2008年。
[45] https://zh.wikipedia.org/wiki/主成分分析
[46] S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[47] 曾靜琳,「以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響」,國立中央大學,碩士論文,民國一百零六年。
[48] Shaw P.J.A. (2003) Multivariate statistics for the Environmental Sciences, Hodder-Arnold. ISBN 978-0-340-80763-7.
[49] H. Norbert Nickel: Hydrogen in semiconductor II, 61, 1999.
[50] S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[51] D. Sudhir, M. Bandyopadhyay, W. Kraus, et al, Online tuning of impedancematching circuit for long pulse inductively coupled plasma sourceoperation–an alternate approach, Rev. Sci. Instrum. 85 (2014) 013510.
[52] 余明倫,「電漿診斷系統輔助化學氣象沉積之鈍化層薄膜製程區間研究」,國立中央大學,碩士論文,民國一百零六年。
[53] H. Abdi., & Williams, L.J. Principal component analysis.. Wiley Interdisciplinary Reviews: Computational Statistics. 2010, 2: 433–459.
[54] W. Kraus, U. Fantz, B. Heinemann, et al., Solid state generator for powerfulradio frequency ion sources in neutral beam injection systems, Fusion Eng.Des. 91 (2015) 16–20
指導教授 傅尹坤 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明