博碩士論文 104553005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.147.27.210
姓名 黃柏源(Bo-Yuan Huang)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 基於卷積神經網路之調變分類技術研究
(Modulation Classification Using Convolutional Neural Networks)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 綜觀軍事通訊發展,在軍事電子戰應用上,針對戰場上的頻譜監控與訊號情報蒐集,如何在高複雜電磁環境下截獲敵方未知通聯訊號,快速的完成偵測、辨識、解譯,以即時獲取敵方情資,在電子戰中至關重要,其中訊號調變類型自動分類,為軍事通訊截收中的關鍵技術。
  傳統基於特徵擷取(feature extraction)的訊號調變分類的方法,需要事先分析出各種特徵參數,再利用決策樹(decision tree)或各種機器學習(machine learning)的方式,從擷取到的特徵資料中訓練出有效的分類模型,此種方式仰賴人為擷取的特徵能夠確實提供訊號分類所需的完整資訊,然而面對通道的各種變化,人工分析得到的特徵值(expert feature)往往會受到干擾而造成分類效果不佳。
  本文提出基於卷積網路(Convolutional Neural Network)之調變分類技術,神經網路可從訓練資料(training data)中自我學習(learning from data),自動擷取特徵並分類,實驗結果顯示,深度卷積神經網路的分類方式有更好的抗干擾性,我們綜合了各個測試的成果,提出的模型在SNR為0dB~20dB 的範圍內,調變分類預測的準確度達到94.05%的不錯表現。
摘要(英) While investigating the development of military communication in the application of military electronic warfare, how to detect, identify and decode signals of interesting in the high-complex electromagnetic environment is extremely important. Automatic modulation recognition and classification has become a necessary technology in military electronic warfare.

Based on feature extraction, traditional modulation classification require prior analysis of various feature parameters, and then use decision trees or machine learning methods to extract features. The classification model is trained based on the captured features. This method relies on the expert features
providing sufficient information for signal classification. However, in the face of varied communication channel, the artificial expert features often be interfered and causes poor classification results.

This paper proposes a modulation classification technique based on Convolutional Neural Network. The neural network can learn from training data, extract features and classify signals automatically. The experimental results show that modulation classification using convolutional neural network provide better anti-interference performance. Analyses show that the proposed model yields an average classification accuracy of 94.05% at varying SNR conditions ranging from 0dB to 20dB.
關鍵字(中) ★ 調變分類
★ 深度學習
★ 卷積神經網路
★ 訊號處理
關鍵字(英) ★ Modulation Classification
★ Deep Learning
★ Convolutional Neural Networks
★ Signal Processing
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 深度學習介紹 4
2.1 深度學習簡介 4
2.1.1 感知器 4
2.1.2 多層感知器 5
2.1.3 激活函數 6
2.1.4 損失函數 9
2.1.5 優化函數 10
2.1.6 訓練神經網路 11
2.2 卷積神經網路 13
2.2.1 卷積層 14
2.2.2 池化層 15
2.2.3 全連接層 16
2.3 循環神經網路 16
2.3.1 循環神經網路介紹 17
2.3.2 長短期記憶網路 20
第三章 深度學習應用於調變分類技術相關文獻 24
3.1 訊號資料集 24
3.2 卷積神經網路在調變分類上的應用 25
3.3 改良版卷積神經網路在調變分類上的應用 27
3.4 長短期記憶模型在調變分類上的應用 28
3.5 小結 30
第四章 提出之卷積網路調變分類模型 31
4.1 測試及訓練資料集 31
4.1.1 RadioML 2016.10 alpha 資料集的限制 31
4.1.2 修改版 RadioML 資料集 31
4.2 不同 CNN 模型比較 32
4.2.1 深度卷積神經網路 32
4.2.2 測試相關資訊 33
4.2.3 測試結果 34
4.3 資料型態比較 35
4.3.1 資料型態簡介 36
4.3.2 測試相關資訊 37
4.3.3 測試結果 38
4.4 不同 SNR 分佈的訓練資料比較 40
4.4.1 高雜訊訊訊號資料觀察 40
4.4.2 測試相關資訊 43
4.4.3 測試結果 43
4.5 不同資料長度比較 45
4.5.1 混淆矩陣 45
4.5.2 測試相關資訊 46
4.5.3 測試結果 47
4.6 提出之訊號分類模型 48
第五章 實驗結果與分析討論 51
5.1 訓練模型 51
5.2 混淆矩陣分析 53
5.3 應用於各種長度資料 54
第六章 結論與未來展望 57
參考文獻 59
參考文獻 [1]A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation recognition of communication signals,” IEEE Transactions on Communications, vol. 46, no. 4, pp. 431-436, Apr 1998.
[2]林聰岷,《使用高階統計法則實現相位鍵移調變訊號分類作業》,碩士論文,國立臺灣大學電信工程學研究所,2012。
[3]C. M. Spooner, “On the utility of sixth-order cyclic cumulants for RF signal classification,” Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 890-897, 2001.
[4]R. M. Al-Makhlasawy, M.M.A. Elnaby, H. A. Al-Khobby, E. M. El-Rabaie and F. E. A. El-samie, “Automatic modulation recognition in OFDM systems using cepstral analysis and support vector machines,” J. Telecomm. Syst. Manag., vol. 1, no. 3, pp.1-7, 2012
[5]K. Triantafyllakis, M. Surligas, G. Vardakis and S. Papadakis, “Phasma: An automatic modulation classification system based on Random Forest,” 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1-3, 2017
[6]J.C. Lin and H.Y. Hsu, “Timing-delay and frequency-offset estimations for initial synchronisation on time-varying Rayleigh fading channels,” IET Commun., vol. 7, iss. 6, pp. 562-576, 2013.
[7]J.C. Lin, “A frequency offset estimation technique based on frequency error characterization for OFDM communication on time-varying multipath fading channels,” IEEE Trans. Vehic. Technol., vol. 56, no. 3, pp. 1209-1222, May 2007.
[8]K.P. Chou, J.-C. Lin and H. V. Poor, “Disintegrated channel estimation in filter-and-forward relay networks,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2835-2847, Jul. 2016.
[9]J.C. Lin, “Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels,” IEEE Trans. Vehic. Technol., vol. 57, no. 6, pp. 3538-3550, Nov. 2008.
[10]J.C. Lin, “Least-squares channel estimation assisted by self-interference cancellation for mobile PRP-OFDM applications,” IET Commun., vol. 3, iss. 12, pp.1907-1918, Dec. 2009.
[11]T. J. O’Shea, J. Corgan and T. C. Clancy, “Convolutional radio modulation recognition networks,” International Conference on Engineering Applications of Neural Networks, vol. 629, pp. 213-226, 2016
[12]W. Yongshi, G. Jie, L. Hao, L. Li, W. Zhigang and W. Houjun, “CNN-based modulation classification in the complicated communication channel,” 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), pp. 512-516, 2017
[13]J. Zhang, Y. Li and J. Yin, “Modulation classification method for frequency modulation signals based on the time–frequency distribution and CNN,” IET Radar, Sonar & Navigation, vol.12, pp. 244-249, 2017
[14]M. Kulin, T. Kazaz, I. Moerman and E. d. Poorter, “End-to-end Learning from Spectrum Data: A Deep Learning approach for Wireless Signal Identification in Spectrum Monitoring applications,” IEEE Access, vol. 6, pp.18484-48501, 2018
[15]T. J. O’Shea, N. West, M. Vondal and T. C. Clancy, "”emi-supervised radio signal identification,” 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 33-38, 2017.
[16]D. Hong, Z. Zhang and X. Xu, “Automatic modulation classification using recurrent neural networks,” 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 695-700, 2017
[17]S. Rajendran, W. Meert and D. Giustiniano, V. Lenders and S. Pollin, “Distributed deep learning models for wireless signal classification with low-cost spectrum sensors,” arXiv:1707.08908, 2017
[18]N.E. West and T. O′Shea, "Deep Architectures for Modulation Recognition," 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1-6, 2017.
[19]X. Liu, D. Yang and A. E. Gamal, “Deep Neural Network Architectures for Modulation Classification,” arXiv:1712.00443, 2017
[20]Y. S. Abu-Mostafa, M. Magdon-Ismail and H.T. Lin, (2016, Dec 26).Machine Learning Foundations. [Online]. Available:https://www.csie.ntu.edu.tw/~htlin/mooc/doc/10_present.pdf
[21]V. Nair and G.E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines," Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814, 2010.
[22]Y. LeCun, C. Cortes and C.J.C. Burges. (1998).The MNIST Database. [Online]. Available: http://yann.lecun.com/exdb/mnist
[23]A Krizhevsky, V Nair and G Hinton. (2009, Nov 23).The CIFAR-10 dataset. [Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html.
[24]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[25]H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning of hierarchical representations with convolutional deep belief networks,” Communications of the ACM, vol. 54, no. 10, pp. 95-103, 2011.
[26]F. F. Li, J. Johnson and S. Yeung. (2017, May 4). Recurrent Neural Networks. [Online]. Available: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
[27]R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng and C Potts, “Recursive deep models for semantic compositionality over a sentiment treebank,” Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1631-1642, 2013.
[28]R. Socher, K. Clark and A. See. (2018, Feb 2). Natural Language Processing with Deep Learning. [Online]. Available:http://cse.iitkgp.ac.in/~sudeshna/courses/DL18/nlp1-9April2018.pdf
[29]D. Jurafsky and J. H. Martin. (2017, Aug 28). Speech and Language Processing. [Online]. Available: https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
[30]S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[31]C. Olah. (2015, Aug 27). Understanding LSTM Networks. [Online]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs
[32]T. O′Shea and J. Shea. (2017, Dec 13). Open Radio Machine Learning Datasets for Open Science. [Online]. Available: https://www.deepsig.io/datasets
[33]T. J. O’Shea and N. West, “Radio machine learning dataset generation with gnu radio,” Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.
[34]K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv:1409.1556, 2014.
[35]N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
[36]D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014
[37]S. J. Pan and Q. Yang. “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2010.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2018-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明