博碩士論文 105423043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:226 、訪客IP:3.147.27.71
姓名 謝宇倫(Yu-Lun Hsieh)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 探討社群媒體與選舉結果之關係- 以2014及2016年臺灣選舉為例
(Study on the Relation between Social Media and Election Results-Using 2014 and 2016 Taiwan Election as an Example.)
相關論文
★ 以破壞性創新理論分析中國山寨產業--以手機產業為例★ 初探線上遊戲對未來領導力的影響
★ 研究機構之開放創新模式-以工研院為例★ 影響個人在虛擬社群環境中知識分享因素之探討
★ Wiki使用者與使用行為之研究★ 醫療院所科技化服務創新與組織能力關係之研究
★ 社會網路服務網站的利益—以Facebook為例★ 協同寫作工具對寫作成效的影響
★ 部落格之網路口碑評比機制平台管理與應用★ 虛擬貨幣交易平台之實現
★ 數位匯流創新經營模式研究 - 以台灣電信業者為例★ SNS遊戲影響社會網路服務持續使用之探討
★ 網路團體購物之使用者行為分析★ 探討微網誌使用者持續使用意圖之研究
★ 如何透過Facebook成員轉送線上內容來行銷?★ 臉書看世界,你!Travel了嗎
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Facebook在2004年成立後,不僅成為使用者分享生活的主流平台,也成為商業、政治吸引關注的新興管道。Facebook在2006年的美國期中選舉時,為候選人建立個人頁面(Profile),提供候選人自行更新資訊、政見與選民互動。社群媒體與選舉結果之研究濫觴由此開始。2008年美國總統大選,民主黨陣營使用微定位選舉策略,利用線上社群媒體與線下人口普查等資料,推估選民的政治立場進而量身訂做宣傳策略。在此之後,社群媒體與選舉結果之研究蓬勃發展,但仍然面臨許多問題與挑戰。

  因此,本研究提出兩個研究問題企圖解決此議題上的困難,其一為社群媒體是否能提供預測選舉結果簡單且有效的方法。其二為社群媒體預測選舉結果是否受到選舉屬性影響。

  為回答上述研究問題,本研究蒐集候選人投票日前一日在Facebook貼文之按讚、留言及分享數與中央選舉委員會公告的選舉資料,整理3項佔比率及15項指標。使用相關分析、迴歸分析、敘述統計、Wilcoxon等級和檢定及Kruskal-Wallis檢定檢驗。

  研究結果有幾下幾點發現,第一,平均按讚佔比率、平均分享佔比率與得票率之關係具有統計意義。第二,最大按讚數、平均按讚數及最小分享數3項指標與選舉結果之關係具有實務意義。第三,選舉屬性確實對社群媒體預測選舉結果之能力造成好壞差異。第四,社群媒體能提供預測選舉結果簡單且有效的方法,但相較其他觀測期間較長之研究,也相對犧牲了一定程度的正確率。
摘要(英) After Facebook′s establishment in 2004, it soon became the main platform to share our daily life, as well as business and political point of views. In 2006 United States midterm election, Facebook provides the "Profile" for the candidates, enabling them to update their information, manifesto, and interact with the voters. This starts the research between social media and the political voting results. In 2008 United States presidential election, The Democratic Party employ the "Micro-positioning" strategy, using online social media and offline census data to evaluate voters′ political standpoint, and tailor-made their advertising strategy.

  From that time, research concerning the relationship between social media and the voting result increase drastically. Yet, there still lays some questions and difficulties needed to confront. This research particularly aims to resolve the debates of these issues, which is: 1. Whether social media can provide a simple and effective method to predict election results. 2. The election attributes whether impact on the predicting ability of social media.

  To answer the questions, this research calculated the amount of the Likes, Comments and Shares on Facebook for each candidates′ posts one day prior to the election day. We compared the collected data with data from Central Election Commission (CEC, Taiwan), and sorted out 3 shares and 15 indexes. We use correlation analysis, regression analysis, narrative statistics and Wilcoxon signed-rank test to examine.

  The result indicated that, firstly, AvgLikeShares and AvgShareShares have statistical significance between the percentage of votes obtained. Secondly, three indexes, Maximum Likes, Average Likes and Minimum Shares, have practical significance between the voting result. Thirdly, electoral attributes did have impacts on the effectiveness of social media′s predicting ability. Lastly, social media could provide a simple and effective predict to the vote, by giving up some accuracy compared to other long-term research.
關鍵字(中) ★ 社群媒體
★ 資料分析
★ 選舉結果
關鍵字(英) ★ Social Media
★ Data Analysis
★ Election Outcome
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VI
一、 緒論 1
1-1 研究背景 1
1-2 研究動機 4
1-3 研究目的 5
1-4 研究流程 6
二、 文獻探討 7
三、 資料與方法 11
3-1 研究架構 11
3-2 研究資料 13
3-3 研究方法 25
四、 結果與討論 27
4-1 統計意義 27
4-2 實務意義 38
4-3 選舉屬性之影響 42
五、 結論與建議 47
5-1 研究結論 47
5-2 研究貢獻 48
5-3 研究限制 50
5-4 研究建議 51
參考文獻 52
參考文獻 [01] Abse, N. (2012). Big data delivers on campaign promise: microtargeted political advertising in election 2012. IAB Presents.
[02] Abse, N. (2013). Big data and microtargeted political ads in election 2012: The challenge ahead. IAB presents: Innovations in web marketing and advertising.
[03] Anstead, N., & O′Loughlin, B. (2014). Social media analysis and public opinion: The 2010 UK general election. Journal of Computer-Mediated Communication, 20(2), 204-220.
[04] Barclay, F. P., Pichandy, C., Venkat, A., & Sudhakaran, S. (2015). India 2014: facebook ‘like’as a predictor of election outcomes. Asian Journal of Political Science, 23(2), 134-160.
[05] Bermingham, A., & Smeaton, A. (2011). On using Twitter to monitor political sentiment and predict election results. Paper presented at the Proceedings of the Workshop on Sentiment Analysis where AI meets Psychology (SAAIP 2011).
[06] Burnap, P., Gibson, R., Sloan, L., Southern, R., & Williams, M. (2016). 140 characters to victory?: Using Twitter to predict the UK 2015 General Election. Electoral Studies, 41, 230-233.
[07] Cameron, M. P., Barrett, P., & Stewardson, B. (2016). Can social media predict election results? Evidence from New Zealand. Journal of Political Marketing, 15(4), 416-432.
[08] Choy, M., Cheong, M., Laik, M. N., & Shung, K. P. (2012). US presidential election 2012 prediction using census corrected Twitter model. arXiv preprint arXiv:1211.0938.
[09] DiGrazia, J., McKelvey, K., Bollen, J., & Rojas, F. (2013). More tweets, more votes: Social media as a quantitative indicator of political behavior. PloS one, 8(11), e79449.
[10] Dwi Prasetyo, N., & Hauff, C. (2015). Twitter-based election prediction in the developing world. Paper presented at the Proceedings of the 26th ACM Conference on Hypertext & Social Media.
[11] Gaurav, M., Srivastava, A., Kumar, A., & Miller, S. (2013). Leveraging candidate popularity on Twitter to predict election outcome. Paper presented at the Proceedings of the 7th Workshop on Social Network Mining and Analysis.
[12] Giglietto, F. (2012). If Likes Were Votes: An Empirical Study on the 2011 Italian Administrative Elections. Paper presented at the Icwsm.
[13] Jaidka, K., Ahmed, S., Skoric, M., & Hilbert, M. (2018). Predicting elections from social media: a three-country, three-method comparative study. Asian Journal of Communication, 1-21.
[14] Jain, V. K., & Kumar, S. (2017). Towards Prediction of Election Outcomes Using Social Media.
[15] Jungherr, A. (2016). Twitter use in election campaigns: A systematic literature review. Journal of information technology & politics, 13(1), 72-91.
[16] Korakakis, M., Spyrou, E., & Mylonas, P. (2017). A survey on political event analysis in Twitter. Paper presented at the Semantic and Social Media Adaptation and Personalization (SMAP), 2017 12th International Workshop on.
[17] Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 201218772.
[18] LaMarre, H. L., & Suzuki-Lambrecht, Y. (2013). Tweeting democracy? Examining Twitter as an online public relations strategy for congressional campaigns’. Public Relations Review, 39(4), 360-368.
[19] MacWilliams, M. C. (2015). Forecasting congressional elections using facebook data. PS: Political Science & Politics, 48(4), 579-583.
[20] Nickerson, D. W., & Rogers, T. (2014). Political campaigns and big data. Journal of Economic Perspectives, 28(2), 51-74.
[21] Safiullah, M., Pathak, P., Singh, S., & Anshul, A. (2017). Social media as an upcoming tool for political marketing effectiveness. Asia Pacific Management Review, 22(1), 10-15.
[22] Sanders, E., & van den Bosch, A. (2013). Relating political party mentions on Twitter with polls and election results.
[23] Sang, E. T. K., & Bos, J. (2012). Predicting the 2011 dutch senate election results with twitter. Paper presented at the Proceedings of the workshop on semantic analysis in social media.
[24] Skoric, M., Poor, N., Achananuparp, P., Lim, E.-P., & Jiang, J. (2012). Tweets and votes: A study of the 2011 singapore general election. Paper presented at the System Science (HICSS), 2012 45th Hawaii International Conference on.
[25] Soler, J. M., Cuartero, F., & Roblizo, M. (2012). Twitter as a tool for predicting elections results. Paper presented at the Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on.
[26] Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. Icwsm, 10(1), 178-185.
[27] Vepsäläinen, T., Li, H., & Suomi, R. (2017). Facebook likes and public opinion: Predicting the 2015 Finnish parliamentary elections. Government Information Quarterly, 34(3), 524-532.
[28] Vergeer, M., Hermans, E., & Sams, S. (2011). Is the voter only a tweet away? Micro-blogging in the 2009 European Parliament elections.
[29] White, K. (2016). Forecasting Canadian Elections Using Twitter. Paper presented at the Canadian Conference on Artificial Intelligence.
[30] Williams, C., & Gulati, G. (2008). What is a social network worth? Facebook and vote share in the 2008 presidential primaries.
[31] Williams, C. B., & Gulati, G. J. (2007). Social networks in political campaigns: Facebook and the 2006 midterm elections. Paper presented at the annual meeting of the American Political Science Association.
[32] Williams, C. B., & Gulati, G. J. J. (2013). Social networks in political campaigns: Facebook and the congressional elections of 2006 and 2008. New Media & Society, 15(1), 52-71.
[33] Xie, Z., Liu, G., Wu, J., Wang, L., & Liu, C. (2016). Wisdom of fusion: Prediction of 2016 Taiwan election with heterogeneous big data. Paper presented at the Service Systems and Service Management (ICSSSM), 2016 13th International Conference on.
[34] Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036-1040.
[35] 王銘宏. (2017). 運用線上社群資訊於使用者行為建模與預測. (博士), 國立臺灣大學, 台北市.
[36] 江家榕. (2015). 以社群媒體為考量之選民政治傾向探索. (碩士), 國立政治大學, 台北市.
[37] 財團法人資訊工業策進會. (2016). 八成以上台灣人愛用Facebook、Line坐穩社群網站龍頭 1人平均擁4個社群帳號 年輕人更愛YouTube和IG.
2018年6月13日取自 https://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=1934&fm_sqno=14.
[38] 高士堯. (2016). 線上支持度與線下選舉結果之關連性研究. (碩士), 國立臺灣大學, 台北市.
[39] 童冠傑. (2015). 以社群媒體為考量之選舉預測. (碩士), 國立清華大學, 新竹市.
指導教授 粟四維(Wesley Shu) 審核日期 2018-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明