博碩士論文 105521041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:18.118.37.197
姓名 李祥維(Shiang-Wei Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 靴帶式整流器與低功率低壓降線性穩壓器功率電子設計與研發
(Power Electronics Design and Implementation of Bootstrapped Rectifier and Low-power Low-dropout Voltage Regulator)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 雖著科技的進步,人類的平均壽命逐漸提升,也因此各種穿戴式生醫電子醫療儀器以及生醫電子輔具如雨後春筍般崛起,固本論文將以如何降低功耗,來達到方便攜帶與提升電磁續行長效之目的。
本論文主要由兩個題目所組成,透過無線藕荷充電技術,使用整流器達到AC-DC再透過線性穩壓器做DC-DC的降壓完成整體系統架構。
題目一
吾人於本文中就藕合無線供電之生醫系統部分,提出了一種取代傳統實現二極體電路方式的新架構,透過達成近乎理想的功率電晶體切換並具有傳統二極體阻止逆電流之特性,大幅提升獵能器電壓與功率轉換效能。本案中述及之應用於無間斷恆久無線近場供電生醫系統之金氧半導體獵能器已透過台灣積體電路的標準金氧半180奈米製程完成布局後之設計模擬驗證,其效能可達到VCE=92.35% PCE=89.18%,整體面積則為1.1894mm2,可望作為新型綠能電子之相關應用的一個重要技術利基。

題目二
吾人於本文中探究PMIC低功耗的生醫系統部分,提出了一種改良版本的線性穩壓器電路的架構,透過最小電流0.5uA的 Quiescent Current已達成低功耗高續航力且Capacitor Free將電路積體化達成SOC,已達成將電路運用在穿帶式生醫系統中。本晶片已透過標準金氧半90奈米製程完成布局後之設計模擬驗證,有三種操作模式,在Normal Mode情況下滿載可達到50mA/100mA;在Low Power Mode情況下輕載則是可達到100uA;在Deep Sleeping Mode下則可維持邏輯閘的正常運作,儘管在靜態電流達到0.5uA時扔可以提供輸出電壓從0.7V到1.2V在Deep Sleeping Mode的情況下,可望作為新型節能電子之相關應用的一個重要技術利基。
摘要(英) In the recent with the increment of average age of humans ,various bio-medical wearable devices have been launched to help humans getting chronic diseases confirm their health.Therefore, how to reduce the power consumption to achieve the portability as well as the long battery life-time requurements is the most important demands of this thesis.

This thesis consists of two big theme. To finish the whole system ,it makes rectifier to convert AC voltage to DC voltage and then use low-dropout regulator to convert DC voltage to DC voltage step down with wireless charging technology.

In the first part, designs in this thesis are fabricated in the TSMC 0.18um 1P6M CMOS process. This article focuses on the conversion efficiency in wireless transmission of electricity. Instead of the traditional diode, proposing a new structure of CMOS which is using the active diode including power CMOS and diode to prevent the reverse current. The simulation of the complete rectifier achieves VCE=92.35% PCE 89.18% The whole chip area is 1.1894 mm2, including PAD.

In the second part, desings in this thesis are fabricated in the 90nm 1P6M CMOS process. This IP is consisted of a bandgap and a CMOS low-dropout regulator for low-power system-on-chip applications. It operates in three modes: normal mode for full load 50mA/100mA operation, low power mode for light load 100uA ,and deep sleep mode to sustain logic level. Even equal quiescent current 0.5u it could provide VOUT voltage 0.7V~1.2V in the deep sleeping mode.
關鍵字(中) ★ 感應耦合
★ 獵能
★ 低功耗
★ 低電流
★ Low-Dropout Regulator
★ 金氧半導體
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
一、緒論 1
1.1 研究背景 2
1.1.1 心律調節器 2
1.1.2 視網膜晶片(Retinal Prosthesis) 3
1.2 研究動機與目的 5
1.3 論文架構 7
二、整流器電路介紹 8
2.1 原理介紹 9
2.2 系統架構及文獻架構概述 13
2.2.1 混和主動式整流器 13
2.2.2 主動式二極體整流器架構概念圖 14
2.2.3 雙交叉型主動式整流器 16
2.2.4 雙交叉電容型主動式整流器 17
2.2.5 靴帶式消除Vth技術主動式整流器 18
2.2.6 靴帶式主動式整流器 19
三、整流器系統設計與模擬 22
3.1 靴帶式主動整流器設計 23
3.1.1 寄生電晶體閂鎖效應(Latch Up) 25
3.1.2 動態本體調變電路 (Dynamic Bulk Switch) 26
3.2 最佳化的功率電晶體尺寸選取 27
3.3 啟動整流電路和電壓監測電路 28
3.4 比較型整流器 30
3.5 改良版靴帶式電路 34
3.6 公式推導 41
四、整流器測試與模擬分析結果與討論 42
4.1 模擬結果(pre-simulation) 43
4.2 模擬結果(Pre-simulation與Post-simulation 比較) 52
4.3 佈局驗證結果錯誤說明 56
4.4 佈局平面圖 57
4.5 打線圖 58
4.6 預計規格列表 58
4.7 量測考量 59
4.7.1 D類型功率放大器(Class D Power Amplifier) 59
4.7.2 量測儀器 62
4.8 量測結果 64
4.9 效能比較表 69
4.10 無線傳能分析 70
4.10.1 無線傳能方式 70
4.10.2 無線傳能頻寬 71
4.10.3 無線傳能應用 73
五、直流(DC)轉直流(DC)穩壓器介紹 77
5.1 直流(DC)轉直流(DC)穩壓器種類 78
5.1.1線性穩壓器(Linear Regulator) 78
5.1.2切換式穩壓器(Switch Regulator) 78
5.2 直流(DC)轉直流(DC)線性穩壓器系統設計考量 80
5.2.1低壓降線性穩壓器(LDO)基本架構 80
5.2.2功率電晶體(Power CMOS)種類和優缺點 81
5.2.3低壓降線性穩壓器(LDO)規格 84
5.2.4 Capacitor & Capacitor Free 90
六、低壓降線性穩壓器(LDO)系統架構設計與模擬 93
6.1 低壓降線性穩壓器架構設計 94
6.2 帶差參考電路(Bandgap,BGR) 95
6.2.1 基本原理 95
6.2.2 論文BGR電路架構 98
6.3 低壓線性穩壓器架構 104
6.4 數位控制電路架構 112
6.5 LDO模式切換 115
6.5.1 模式切換原理 115
6.5.2 模式切換問題 116
6.5.3 模式切換解決 119
6.5.4 啟動電壓 123
七、低壓降線性穩壓器(LDO)測試與模擬分析結果與討論 127
7.1 模擬結果(pre-simulation & post-simulation) 128
7.2 量測考量 142
7.3 佈局驗證結果 144
7.4 佈局平面圖 145
7.5 打線圖 146
7.6 效能比較表 147
八、總結與未來展望 148
8.1 總結 149
8.2 未來展望 149
參考文獻&參考資料 150
參考文獻&參考資料 151
參考文獻 [1] Shuenn-YuhLEE ,Y-C.Su ,M-C.Liang ,J-H.HONG ,C-H.Hsieh ,C-M.Yang ,Y-Y.Chen ,H-Y. Lai ,J-W.Lin ,Q.Fang “A Programmable Implantable Micro-Stimulator SoC with Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker,” ISSCC 2011/SESSION 2/TECHNOLOGIES FOR HEALTH /2.6
[2] 楊忠旻 , “應用於心臟微刺激器之無限前端電路” , 國立中正大學電機工程研究所碩士論文, 民國99年
[3] http://www.clinico.com.tw/eye1/eye12/eye126/i126a.htm
[4] https://www.vghtc.gov.tw/GipOpenWeb/wSite/public/Attachment/vghtc/StudyAbroad/100-04.pdf
[5] Mohanasankar Sivaprakasam ,Wentai Liu ,Guoxing Wang ,Mingcui Zhou ,James D.Weiland ,Mark S. Humayun Department of Electrical Engineering, University of California at Santa Cruz, CA95064, USA ,Department of Ophthalmology, University of Southern California, CA90089, USA “Architecture Tradeoffs in High Density Microstimulators for Retinal Prosthesis,” Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering Arlington ,Virginia March 16 -19 ,2005
[5] 趙博鈞 , “人工電子眼之視網膜刺激晶片設計”, 國立陽明大學醫學工程研究所碩士論文, 民國97年
[6] https://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000369660_E6O52WGP7Q1UECL8DN677
[7] Maysam Ghovanloo ,Member ,IEEE, and Khalil Najafi ,Fellow ,IEEE “Fully Integrated Wideband High-Current Rectifiers for Inductively Powered Devices,”  IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 11, NOVEMBER 2004
[8]  Cihun-Siyong Alex Gong and Tim K. Shia “Integrated CMOS Energy Harvesting Circuits for Bio-applications”
[9] Mehrdad A. Ghanad, and Catherine Dehollain “A Passive CMOS Rectifier with Leakage Current Control for Medical Implants”
[10] S. Saeid Hashemi, Mohamad Sawan, Fellow, IEEE, and Yvon Savaria, Fellow, IEEE “A High-Efficiency Low-Voltage CMOS Rectifier for Harvesting Energy in Implantable Devices”
[11] Gaurav BawaA Maysam Ghovanloo “Analysis, design, and implementation of a high-efficiency full-wave rectifier in standard CMOS technology,” Received: 3 January 2008 / Revised: 3 January 2008 / Accepted: 7 July 2008 / Published online: 1 August 2008
[12] Saeid Hashemi, Mohamad Sawan, Yvon Savaria “A novel low-drop CMOS active rectifier for RF-powered devices: Experimental results” 
[13] Song Guo, Student Member, IEEE, and Hoi Lee, Member, IEEE “An Efficiency-Enhanced CMOS Rectifier with Unbalanced-Biased Comparators for Transcutaneous-Powered High-Current Implants,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.44,NO.6,JUNE 2009
[14] Hyung-Min Lee, Student Member, IEEE, and Maysam Ghovanloo, Senior Member, IEEE “An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications”
[15] Hyouk-Kyu Cha, Member, IEEE Woo-Tae Park, Member, IEEE, and Minkyu Je, Member, IEEE “A CMOS Rectifier With a Cross-Coupled Latched Comparator for Wireless Power Transfer in Biomedical Applications,” IEE TRANSACTIONS ON CIRCUITS AND SYSTEMS- II: EXPRESS BRIEFS, VOL.59,NO.7,JULY 2012
[16] Chung-Yu Wu, Fellow, IEEE, Xin-Hong Qian, Student Member, IEEE, Ming-Seng Cheng, Yu-An Liang, and Wei-Ming Chen, Member, IEEE “A 13.56 MHz 40mW CMOS High-Efficiency Inductive Link Power Supply Utilizing On-Chip Delay-Compensated Voltage Doubler Rectifier and Multiple LDOs for Implantable Medical Devices,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 11, NOVEMBER 2014
[17] Yan Lu, Stedent Member, IEEE, and Wing-Hung Ki, Member, IEEE “A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems,” IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSYEMS, VOL. 8, NO. 3, JUNE 2014
[18] Xing Li, Chi-Ying Tsui, Senior Member, IEEE, and Wing-Hung Ki, Member, IEEE “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSYEMS, VOL. 8, NO. 3, JUNE 2014

[19] 郭大豪 , “高效率低電壓暨遞回遙測之全波靴帶式CMOS整流器設計”, 長庚大學電機工程學系碩士論文, 民國105年.
[20] https://en.wikipedia.org/wiki/Near_and_far_field
[21] https://zh.wikipedia.org/wiki/ISM%E9%A2%91%E6%AE%B5
[22] 楊凱傑 , “應用於13.56MHz ISM band 的非同步QPSK解調變” , 國立中正大學電機工程研究所碩士論文, 民國101年
[22] https://www.cool3c.com/article/83505
[23] 謝周宇 ,江朝文 ,財團法人車輛研究測試中心 , “磁共振無線充電系統之共振線圈設計與分析” , 第十二屆台灣電力電子研討會暨展覽會, 民國102年
[24] HAN-JOON KIM, (Student Member ,IEEE) ,HIROSHI HIRAYMA, (Member ,IEEE) ,SANGHOEK KIM, (Member ,IEEE) ,KI JIN HAN, (Senior Member ,IEEE) ,RUI ZHANG ,(Fellow ,IEEE) ,AND JI-WOONG CHOI, (Senior Member ,IEEE), “Review of Near-Field Wireless Power and Communication for Biomedical Applications,” SPECIAL SECTION ON ENERGY EFFICIENT WIRELESS COMMUNICATIONS WITH ENERGY HARVESTING AND WIRELESS POWER TRANSFER Received August 30 ,2017 ,accepted September 13 , 2017 ,date of publication September 27 ,2017 ,data of current version October 25, 2017.
[25] Yeung Bun Choi and Wooi Gan Yeoh “Air-interfacing Microwave Passive RFID Tag in Bulk CMOS,” RFIT2005-IEEE International Workshop on Radio-Frequency Integration Technology, Nov 30-Dec 02 ,2005 ,Singapore
[26] Ke-Hou Chen, Jian-Hao Lu and Shen-Iuan Liu “A 2.4GHz Efficiency-Enhanced Rectifier for Wireless Telemetry,” IEEE 2007 Custom Intergrated Circuits Conference (CICC)
[27] Hyung-Gu Park ,Jae-Hyeong Jang ,Hong-Jin Kim ,Young-Jun Park ,SeongJin Oh ,Student Member ,IEEE ,YoungGun Pu ,Keum Cheol Hwang ,Youngpp Yang ,Meber ,IEEE ,and Kang-Yoon Lee ,Senior Meber ,IEEE “A Design of a Wireless Power Receiving Unit With a High-Efficiency 6.78-MHz Active Rectifier Using Shared DLLs for Magnetic-Resonant A4 WP Applications,” IEEE TRANSACTIONS ON POWER ELECTRONICS ,VOL. 31 ,NO. 6 ,JUNE 2016
[28] Minfan Fu ,Zefan Tang ,Ming Liu ,Chengbin Ma ,Xinen Zhu “Full-Bridge Rectifier Input Reactance Compensation in Megahertz Wireless Power Transfer Systems,” 2015 IEEE
[29] Ming Liu ,Student Member ,IEEE ,Minfan Fu ,Student Member ,IEEE ,and Chengbin Ma ,Member ,IEEE “Parameter Design for a 6.78-MHz Wireless Power Transfer System Based on Analytical Derivation of Class E Current-Driver Rectifier,” IEEE TRANSACTIONS ON POWER ELECTRONICS ,VOL. 31 ,NO. 6,JUNE 2016
[30] Yan Lu ,Student Member ,IEEE ,and Wing-Hung Ki ,Member ,IEEE “A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer System,” IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS ,VOL. 8 ,NO. 3,JUNE 2014
[31] Mohammand Bani Shamseh ,Itsuo Yuzurihara ,and Atsuo Kawamura ,Fellow ,IEEE “A 3.2-kw 13.56-MHz SiC Passive Rectifier With 94% Efficiency Using Commutation Capacitor,” IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL .31 ,NO. 10, OCTOBER 2016
[32] Zhongtao Liu, Student Member, IEEE, Zheng Zhong, Member, IEEE, and Yong-Xin Guo, Senior Member, IEEE “In Vivo High-Efficiency Wireless Power Transfer With Multisine Excitation,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.65, NO.9, SEPTEMBER 2017,
[33] Pengpeng Chen , Huazhong Yang , Senior Member, IEEE, Rong Luo , and Bo Zhao , Senior Member, IEEE “A Tissue-Channel Transcutaneous Power Transfer Technique for Implantable Devices,” This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2791966, IEEE
Transactions on Power Electronics
[34] SEDRA/SMITH, “MICROELECTRONIC CIRTUITS INTERNATIONAL SIXTH EDITION”
[35] Behzad Razavi, “類比CMOS積體電路設計”修訂版
[36] Ke-Horng Chen, “Power Management Techniques for Integrated Circuit Design”
[37] 李冠舜 , “應用於生醫系統具低雜訊且低供應電壓的帶差參考電路與RC時間常數校正機制之低功率連續時間三角積分類比數位轉換器”, 國立中央大學電機工程學系碩士論文, 民國106年
[38]柯致專 , “應用於生醫系統值入式晶片之n-mosfet低壓降穩壓器(LDO)設計”, 國立中央大學電機工程學系碩士論文, 民國101年
[39] Ka Nang Leung, Member, IEEE, and Philip K. T. Mok, Senior Member, IEEE “A Capacitor-FREE CMOS Low-Dropout Regulator With Damping-Factor-Control Frequency Compensation,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 10, OCTOBER 2003
[40] Peter Hazucha, Member, IEEE, Tanay Karnik, Senior Member, IEEE, Bradley A. Bloechel, Associate Member, IEEE, Colleen Parsons, David Finan, and Shekhar, Member, IEEE “Area-Efficient Linear Regulator With Ultra-Fast Load Regulaiton,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 4, APRIL2005
[41] Sai Kit Lau, Member, IEEE, Philip K. T. Mok, Senior Member, IEEE, and Ka Nang Leung, Member, IEEE “A Low-Dropout Regulator for SoC With Q-Reduction,”
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 3, MARCH 2007
[42] Robert J. Milliken, Jose Silva-Martinez, Senior Member, IEEE, and Edgar Sanchez-Sinencio, Fellow, IEEE “Full On-Chip CMOS Low-Droput Voltage Regulator,” IEEE TRANSACTIONS ON CIRCUITS AND SYSEM-I: REGULAR PAPERS, VOL. 54, NO. 9, SEPTEMBER 2007
[43] Tsz Yin Man, Student Member, IEEE, Philip K. T. Mok, Senior Member, IEEE, and Mansun Chan, Senior Member, IEEE “A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient- Response Improvement,” IEEE TRANSACTIONS ON CIRCUITRS AND SYSTEMS-II:EXPRESS BRIEFS, VOL. 54, NO. 9, SEPTEMBER 2007
[44] Edward N. Y.Ho and Philip K. T. Mok, Senior Member, IEEE “A Capacitor-Less CMOS Active Feedback Low-Dropout Regulator With Slew-Rate Enhancement for Portable On-Chip Application,” IEEE TRANSACTIONS ON CIRCUITRS AND SYSTEMS-II:EXPRESS BRIEFS, VOL. 57, NO. 2, FEBRUARY 2010
[45] Pui Ying Or and Ka Nang Leung, Senior Member, IEEE “An Output-Capacitorless Low-Dropout Regulator With Direct Voltage-Spike Detection,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 2, FEBRUARY2010
[46] Mohamed El-Nozahi, Student Member, IEEE, Ahmed Amer, Student Member, IEEE, Joselyn Torres, Student Member, IEEE, Kamran Entesari, Member, IEEE, and Edgar Sanchez-Sinencio, Fellow, IEEE “High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 3, MARCH 2010
[47] Marco Ho, Student Member, IEEE, Ka Nang Leung, Senior Member, IEEE, and Ki-Leung Mak “A Low-Power Fast-Transient 90-nm Low-Dropout Regulator With Multiple Small-Gain Stages,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 11, NOVEMBER 2010
指導教授 薛木添 審核日期 2018-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明