博碩士論文 105521122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:52.15.143.223
姓名 曾聖閔(Sheng-Min-Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新穎非侵入式光學血糖偵測技術
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 世界衛生組織在2016發表的期刊指出全球糖尿病的人口不斷攀升,且糖尿病在國人死亡率排名中為第五名,由此可知定期的血糖監控是十分重要的,然而傳統血糖機無法連續測量,且採血過程造成使用者的不適感,因此近年來血糖機的發展逐漸朝向非侵入式血糖量測研究,在目前提出的技術中,又以光學量測方式最有潛力。然而在發展上,由於葡萄糖訊號相當微弱,在做光學量測時容易受外在因素干擾產生誤差,且諸多研究採用的光源多為近紅外光因此量測時也發現易受溫度造成的基線飄移所干擾。因此,本研究欲利用雙光源量測技術,發展非侵入式血糖偵測系統,該系統由單晶片Arm-CortexM4以SPI方式作為溝通連接AFE4490晶片並配合本實驗室設計的PPG量測探頭利用H-bridge電路進行雙光源PPG資料讀取,PPG訊號的資料取樣率設定為500Hz,再利用藍芽方式將受測者PPG數據回傳電腦使用並matlab進行演算法運算。
本系統藉由近紅光對血糖較為敏感的特性作為系統所用之光源,並以綠光作為校正基準用以消除交感神經變化所造成的量測誤差。經由實驗量測18名健康正常人的綠光以及近紅外光PPG訊號,並藉服用糖水的方式改變受試者血糖值,以市售血糖機OneTouch-UltraEasy量測血糖,接著以迴歸分析驗證利用本系統所預測的血糖變化量與實際量測的血糖變化量誤差為22.57%,證實了光學血糖偵測技術的可行性。然而在本研究中發現,因個人生理狀況的差異所以經演算法所計算出來的數值在受測者之間會有基線差異的問題,因此本系統所呈現的結果均為血糖變化量對上旋光性比例變化,對於量測血糖值仍然須對個人生理狀態去做系統校正才能夠應用於血糖量測。
摘要(英) The World Health Organization published a journal in 2016 pointing out that the global population of diabetes continues to rise and that diabetes is ranked fifth in the country′s mortality rate. This shows that regular blood glucose monitoring is very important, but conventional blood glucose machines cannot measure continuously, and blood collection process causes discomfort to the user. Therefore, in recent years, the development of blood glucose machines has gradually been directed towards non-invasive blood glucose measurement. Among the currently proposed technologies, optical measurement methods are most promising. However, in terms of development, because the glucose signal is rather weak, it is easy to be subject to external factors to interfere with the error during optical measurement. Many of the light sources used in the research are near-infrared light. Therefore, baseline drift that is susceptible to temperature is also found during measurement. Therefore, this study intends to develop a non-invasive blood glucose detection system using dual-lamp measurement technology. The system uses a single-chip microcomputer Arm-Cortex M4 to communicate and connect AFE4490 Chip with the SPI method and to use the PPG measurement probe designed by the laboratory with H-bridge circuit for dual light source PPG data read, PPG signal data sampling rate is set to 500Hz, and then use the Bluetooth method to test the PPG data back to the computer and then use matlab to calculate algorithm.
The system uses near-red light sensitivity to blood glucose as the light source used by the system, and uses green light as the calibration reference to eliminate measurement errors caused by sympathetic nerve changes. The green light and near-infrared light PPG signals of 18 normal healthy people were measured, and the blood glucose level of subjects was changed by taking sugar water, and blood glucose was measured with the commercially available blood glucose meter OneTouch-UltraEasy, and then verified by regression analysis. The error of the blood glucose variation predicted by the system and the actual measurement was 22.57%, confirming the feasibility of the optical blood glucose detection technology. However, in this study, it was found that the values calculated by the algorithm due to differences in the individual′s physiological conditions may have a problem of baseline differences among the subjects. Therefore, the results presented in this system are all the changes in the blood glucose level with Optical activity changes,form this reason our system for the measurement of blood glucose values still need to be recalibrated for individual statment and that can be applied to blood glucose measurement.
關鍵字(中) ★ 糖尿病
★ 血糖量測
★ 光體積血容積
關鍵字(英)
論文目次 目錄

中文摘要 I
Abstract II
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1侵入式量測 2
1-2-2 非式侵入量測 4
1-3研究動機 4
1-4 論文章節架構 5
第二章 原理介紹 6
2-1研究動機 6
2-2脈搏波與心動週期 7
2-3血糖的恆定 8
2-3-1糖尿病判斷標準與致病成因 9
2-4光體積血容積(Photoplethysmography, PPG) 11
2-4-1不同波長所量測的光體積血容積 11
2-5 Beer-Lambert-Law 13
2-5-1 Beer-Lambert-Law修正 14
2-5-2 R值的計算方法 15
2-5-3 利用R值推算血液介質吸光度 17
第三章 研究設計與方法 18
3-1系統架構 18
3-1-1硬體架構 18
3-1-2訊號處理與分析 20
3-2實驗設計 23
3-2-1實驗步驟 23
3-2-2實驗設計流程 23
第四章 結果與討論 26
4-1實驗結果 26
4-2結果與討論 34
第五章 結論與未來展望 35
第六章 參考文獻 36
參考文獻 [1] Global Report on Diabetes.World Health Organization,2016
[2]S. F. CLARKE and J. R. FOSTER. A history of blood glucose meters and their role.2012
[3]Malanda UL1, Welschen LM, Riphagen II,.Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin.18 January 2012
[4]Advances in Electrochemical Sciences and Engineering : Bioelectrochemistry : Fundamentals, Applications and Recent Developments. Somerset, NJ, US: John Wiley & Sons, 2013.
[5]Ksenia Tonyushkina and James H. Nichols. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results
[6]David L. Williams, Alfred R. Doig,and Alexander Korosi. Electrochemical-Enzymatic Analysis of Blood Glucose and Lactate,1970
[7]Biochemistry Department, CentralLaboratory, Royal Infirmary, Sunderland. Determination of Glucose in Blood using Glucose Oxidase with an alternative oxygen acceptor,1969
[8]R. Marbach, Th. Koschinsky, F. A. Gries,H. M. Heise Noninvasive Blood Glucose Assay by Near-Infrared Diffuse Reflectance Spectroscopy of the Human Inner Lip.1993
[9]Chien Chou, Chien-Yuan Han, Wen-Chuan Kuo, Yeu-Chuen Huang, Ching-Mei Feng,and Jenn-Chyang Shyu. Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,1998
[10]Katsuhiko Maruo, Mitsuhiro Tsurugi, Jakusei Chin, Tomohiro Ota, Hidenobu Arimoto, Yukio Yamada. Noninvasive Blood Glucose Assay Using a Newly Developed Near-Infrared System,2003
[11]Buford Randall Jean, Eric C. Green, and Melanie J. McClung. A Microwave Frequency Sensor for Non-Invasive Blood-Glucose Measurement,2008
[12]卓貴美.圖解生理學,2版, 五南圖書出版,2008年
[13]Vidhya V , Deepa Unnikrishnan .Synthetic ECG and PPG signal generation using pulse shaping technique. 31 March 2016
[14]成志霞,劉 傑. 基於脈搏波的動脈硬化檢測及其遠程實現.2015
[15]林育德.脈波信號與PPG信號特徵之相關性研究.
[16]李昂澤,林時逸,許惠恒. 升糖素於糖尿病致病機轉角色探討回顧.2013
[17]Pia V Roder1, Bingbing Wu2, Yixian Liu2 and Weiping Han1. Pancreatic regulation of glucose homeostasis.2016
[18]Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD. Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 2011; 13 Suppl 1: 118-25
[19]Diabetes Fact sheet N°312. WHO. October 2013 [25 March 2014].
[20]賴邦嶽,張力天,楊文欽 .科學發展501期,56 ~ 62頁.2014
[21]Leutholtz, Brian C.; Ripoll, Ignacio. Diabetes. Exercise and disease management 2nd. Boca Raton: CRC Press. 2011:
[22]Vijan, S. Type 2 diabetes. Annals of Internal Medicine. March 2010, 152 (5): ITC31-15.
[23]衛生福利部國民健康署-糖尿病防治手冊第六章第一節血糖控制與糖尿病併發症 血糖控制與糖尿病併發症
[24]Yasuhiro Yamakoshi,Kenta Matsumura.Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose.J. of Biomedical Optics, 22(6), 067001 (2017). doi:10.1117/1.JBO.22.6.067001
[25]Maeda Y.The advantages of wearable green reflected photoplethysmography.J Med Syst. 2011 Oct;35(5):829-34. doi: 10.1007/s10916-010-9506-z. Epub 2010 May 18
[26]Zhong Ren, Guodong Liu, Zhen Huang, Dengji Zhao & Zhihua Xiong.Exploration and Practice in Photoacoustic Measurement for Glucose Concentration Based on Tunable Pulsed Laser Induced Ultrasound.2015
[27]徐雅潔.基於DSP脈搏量測平台的設計及實現.2019
指導教授 李柏磊 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明