博碩士論文 105521082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.144.4.76
姓名 俞韋安(Wei-An Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於內藏式永磁同步馬達之智慧型最佳伺服頻寬調整及慣量估測
(Intelligent Control with Optimal Bandwidth Tuning and Inertia Estimation for IPMSM Drive System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一使用兩個雙輸入單輸出之小波模糊類神經網路線上增益調整之內藏式永磁同步馬達驅動系統用以在不同速度命令下達到系統最佳頻寬,為了在不知道馬達參數以及特性的情況下尋找系統最佳頻寬,兩個雙輸入單輸出之小波模糊類神經網路被利用於線上調整PI速度控制器之參數。此外,本論文亦提出使用小波模糊類神經網路對內藏式永磁同步馬達驅動系統線上即時轉動慣量鑑別之技術,估測出之轉動慣量將應用於線上調整內藏式永磁同步馬達驅動系統IP速度控制器參數,並且在不同操作條件下做驗證。最後,本論文亦發展一種機械共振頻率偵測流程。實驗所使用之硬體為應用德州儀器公司生產之浮點數數位訊號處理器TMS320F28075之內藏式永磁同步馬達驅動系統。
摘要(英) In order to achieve the optimal bandwidth at different speed commands, an online auto-tuning technique using two two-input one-output wavelet fuzzy neural networks (WFNNs) for interior permanent magnet synchronous motor (IPMSM) servo drives is proposed in this thesis. Two two-input one-output four-layer WFNNs are proposed for the online auto-tuning of the gains of a proportional-integral (PI) speed controller of the servo motor drive in order to searching the optimal bandwidth without using the information of plant parameters and the characteristics of the servo motor drive. In addition, a real-time moment of inertia identification technique using wavelet fuzzy neural network for an interior permanent magnet synchronous motor (IPMSM) servo drive is proposed in this thesis. The estimated moment of inertia will be used in the online design of an integral-proportional (IP) speed controller to achieve the gains auto-tuning of the IPMSM servo drive. The WFNN is proposed for the real-time identification of the moment of inertia of the IPMSM servo drive system in order to tune the gains of the IP speed controller online at different operating conditions. Finally, a method for the detection of mechanical resonance frequency is also developed in this thesis. The experimentation using the IPMSM servo drive based on Texas Instruments′ floating point digital signal processor (DSP) TMS320F28075 is presented.
關鍵字(中) ★ 內藏式永磁同步馬達
★ 小波模糊類神經網路
★ 最佳頻寬
★ 線上增益調整
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧與簡介 2
1.3 本文貢獻 6
1.4 論文大綱 7
第二章 內藏式永磁同步馬達變頻驅動器硬體介紹 8
2.1 前言 8
2.2 馬達變頻驅動系統 8
2.3 改良式磁粉式煞車 9
2.4 數位訊號處理器 10
2.5 驅動控制電路板 14
第三章 內藏式永磁同步馬達數學模型及電磁轉矩方程式 18
3.1 前言 18
3.2 三相座標轉換 20
3.3 內藏式永磁同步馬達在abc座標系下之數學模型 23
3.4 內藏式永磁同步馬達在αβ座標系下之數學模型 25
3.5 內藏式永磁同步馬達在d-q座標系下之數學模型 29
3.6 凸極式反電動勢定義 31
第四章 小波模糊類神經網路 35
4.1 前言 35
4.2 小波模糊類神經網路架構 35
4.3 線上學習法則 38
4.4 網路收斂性分析 41
第五章 具線上增益調變之最佳速度迴路頻寬與慣量估測之馬達伺服驅動器…………. 43
5.1 前言 43
5.2 內藏式永磁同步馬達驅動系統之轉移函數 43
5.3 內藏式永磁同步馬達驅動系統之速度響應性能分析 46
5.4 智慧型線上轉動慣量估測 46
5.5 內藏式永磁同步馬達驅動系統之IP速度控制器設計 48
第六章 共振頻率偵測 51
6.1 前言 51
6.2 動態訊號分析儀 51
6.3 共振頻率偵測流程 53
第七章 模擬與實驗結果 57
7.1 前言 57
7.2 線上增益調變之最佳速度迴路頻寬馬達驅動器 59
7.2.1 實驗架構與設計 59
7.2.2 模擬結果 60
7.2.3 實驗結果 68
7.3 智慧型線上轉動慣量估測之馬達驅動器 79
7.3.1 實驗架構與設計 79
7.3.2 模擬結果 80
7.3.3 實驗結果 88
7.4 共振頻率偵測實驗結果 98
第八章 結論與未來研究方向 101
參考文獻….. 102
作者簡歷….. 108
參考文獻 [1] P. Pillay, and R. Krishnan, “Application Characteristics of Permanent Magnet Synchronous and Brushless dc Motors for Servo Drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[2] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, Sep. 2011.
[3] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488-497, Jan. 2013.
[4] F. J. Lin, Y. C. Hung, J. M. Chen, and C. M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1226-1241, May 2014.
[5] J. Lemmens, P. Vanassche, and J. Driesen, “PMSM drive current and voltage limiting as a constraint optimal control problem,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, pp. 326-338, Jun. 2014.
[6] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sep. 2015.
[7] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, Jun. 2004.
[8] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 9, pp. 1649-1661, Sep. 2006.
[9] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary slidingmode control,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1061-1073, Feb. 2012.
[10] H. Chaoui, and P. Sicard, “Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1123-1133, Feb. 2012.
[11] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, “Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4443-4455, Nov. 2012.
[12] H. Pan and L. Z. Xia, “Efficient object recognition using boundary representation and wavelet neural network,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2132-2149, Dec. 2008.
[13] F. J. Lin, Y. C. Hung, and K. C. Ruan, “An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1598-1611, Dec. 2014.
[14] R. H. Abiyev, and O. Kaynak, “Fuzzy wavelet neural networks for identification and control of dynamic plants – A novel structure and a comparative study,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3133-3140, Aug. 2008.
[15] F. J. Lin, K. H. Tan, D. Y. Fang, and Y. D. Lee, “Intelligent controlled three-phase squirrel-cage induction generator system using wavelet fuzzy neural network for wind power,” IET Renew. Power Generat., vol. 7, no. 5, pp. 552-564, 2013.
[16] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 3046-3058, Jul. 2011.
[17] S. M. Yang, and K. W. Lin, “Automatic control loop tuning for permanent-magnet AC servo motor drives, ” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1499-1506, Jul. 2016.
[18] H. Wang, M. Yang, L. Niu, and D. Xu, “Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives,” in Proc. IEEE 5th Conf. Ind. Electron. Appl., pp. 1340-1345, 2010.
[19] A. Sarca, B. Naum, and D. Matianu, “A new approach for automatic tuning of electrical drives current loop controllers,” Advanced Topics in Electrical Engineering (ATEE), 2015 9th International Symposium, pp. 231-235, May 2015.
[20] J. Bocker, S. Beineke, and A. Bahr, “On the control bandwidth of servo drives,” Proc. 13th Eur. Conf. Power Electron. Appl., pp. 1-10, 2009.
[21] C. J. Hsu, and Y. S. Lai, “Novel on-line optimal bandwidth search and auto tuning techniques for servo motor drives,” Proc. IEEE Energy Conversion Congress and Expo. (ECCE), pp. 1-8, 2016.
[22] K. Liu, and Z. Zhu, “Fast determination of moment of inertia of permanent magnet synchronous machine drives for design of speed loop regulator, ” IEEE Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1816-1824 Sep. 2017.
[23] F. Andoh, “Moment of inertia identification using the time average of the product of torque reference input and motor position,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2534-2542, Nov. 2007.
[24] S. Li, and Z. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia, ” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3050-3059, Aug. 2009.
[25] 陳仕堯,「採用功率擾動之每安培最大轉矩控制內藏式永磁同步馬達驅動器之研製」,中央大學電機工程系,碩士論文,民國105年6月。

[26] L. Niu, D. Xu, M. Yang, X. Gui, and Z. Liu, “On-line inertia identification algorithm for PI parameters optimization in speed loop,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 849-859, Feb. 2015.
[27] S. M. Yang, and S. C. Wang, “The detection of resonance frequency in motion control systems,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3423-3427, Sep./Oct. 2014.
[28] Y. Wang, Q. Zheng, and H. Zhang, “Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system,” IEEE Access, vol. 6, pp. 23896-23906, Apr. 2018.
[29] K. Ohno, and T. Hara, “Adaptive resonant mode compensation for hard disk drives,” IEEE Trans. Ind. Electron., vol. 5, no. 2, pp. 624-630, Apr. 2006.
[30] S. H. Kia, H. Henao, and G. A. Capolino, “Torsional vibration assessment using induction machine electromagnetic torque estimation,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 209-219, Jan. 2010.
[31] A. R. Mohanty, and C. Kar, “Fault detection in a multistage gearbox by demodulation of motor current waveform,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1285-1297, Aug. 2006.
[32] 盛暘科技股份有限公司,數位訊號處理,2007。
[33] Texas Instruments,TMS320F28075 datasheet.
[34] MCP4922 datasheet.
[35] 黃泰寅,「新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發」,中央大學電機工程系,碩士論文,民國106年6月。
[36] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[37] D. Hanselman, Brushless permanent magnet motor design, The Writer’s Collective, USA , 2003.
[38] 瑞智精密股份有限公司, http://www.rechi.com.
[39] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[40] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[41] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimator of an extented electromotive force,” Proc. IECON 00, pp. 1814-1819, 2000.
[42] 劉映岑,「應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製」,中央大學電機工程系,碩士論文,民國106年6月。
[43] F. J. Lin, R. J. Wai, and P. K. Huang, “Two-axis motion control system using wavelet neural network for ultrasonic motor drives,” IEE Proc. Electr. Power Appl., vol. 151, no. 5, pp. 613-621, Sep. 2004.
[44] J. Zhang, G. G. Walter, Y. Miao, and W. N. W. Lee, “Wavelet neural networks for function learning,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1485-1497, Jun. 1995.
[45] S. J. Yoo, Y. H. Choi, and J. B. Park, “Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: Adaptive learning rates approach,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 6, pp. 1381-1395, Jun. 2006.
[46] F. J. Lin, “Robust speed-controlled induction-motor drive using EKF and RLS estimators, ” IEE Proc. Electron. Appl. , pp. 186-192, 1996.
[47] Keysight 35670A, datasheet.
[48] D. H. Lee, J. H. Lee, and J. W. Ahn, “Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast Fourier transform analysis, ” IET Electron. Power Appl., vol. 6, pp. 455-461, 2012.
[49] H. Sediki, A. Bechouche, D. O. Abdeslam, and S. Haddad, “ADALINE approach for induction motor mechanical parameters identification,” Mathematics and Computers in Simulation, Elsevier, pp. 86-97, 2013.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明