參考文獻 |
[1] C. H. Jan, “10 years of transistor innovations in System-on-Chip (SoC) era,” in Solid-State and Integrated Circuit Technology (ICSICT), 12th IEEE International Conference on, pp. 1-4, 2014.
[2] C. H. Jan, P. Bai, J. Choi, G. Curello, S. Jacobs, J. Jeong, K. Johnson, D. Jones, S. Klopcic, J. Lin, N. Lindert, A. Lio, S. Natarajan, J. Neirynck, P. Packan, J. Park, I. Post, M. Patel, S. Ramey, P. Reese, L. Rockford, A. Roskowski, G. Sacks, B. Turkot, Y. Wang, L. Wei, J. Yip, I. Young, K. Zhang, Y. Zhang, M. Bohr, and B. Holt, “A 65-nm ultra low power logic platform technology using uni-axial strained silicon transistors,” in IEDM Tech. Dig., pp. 60-63, 2005.
[3] C. H. Jan, P. Bai, S. Biswas, M. Buehler, Z.-P. Chen, G. Curello, S. Gannavaram, W. Hafez, J. He, J. Hicks, U. Jalan, N. Lazo, J. Lin, N. Lindert, C. Litteken, M. Jones, M. Kang, K. Komeyli, A. Mezhiba, S. Naskar, S. Olson, J. Park, R. Parker, L. Pei, I. Post, N. Pradhan, C. Prasad, M. Prince, J. Rizk, G. Sacks, H. Tashiro, D. Towner, C. Tsai, Y. Wang, L. Yang, J. Y. Yeh, J. Yip, and K. Mistry, “A 45-nm low power system-on-chip technology with dual gate (logic and I/O) high-κ/metal gate strained silicon transistors,” in IEDM Tech. Dig., pp. 1-4, 2008.
[4] P. VanDerVoorn, M. Agostinelli, S. J. Choi, G. Curello, H. Deshpande, M. A. El-Tanani, W. Hafez, U. Jalan, L. Janbay, M. Kang, K. J. Koh, K. Komeyli, H. Lakdawala, J. Lin, N. Lindert, S. Mudanai, J. Park, K. Phoa, A. Rahman, J. Rizk, L. Rockford, G. Sacks, K. Soumyanath, H. Tashiro, S. Taylor, C. Tsai, H. Xu, J. Xu, L. Yang, I. Young, J. Y. Yeh, J. Yip, P. Bai, and C. H. Jan, “A 32-nm low power RF CMOS SOC technology featuring high-κ/metal gate,” in VLSI Techn., pp. 137-138, 2010.
[5] C. H. Jan, U. Bhattacharya, R. Brain, S. J. Choi, G. Curello, G. Gupta, W. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, J. Park, K. Phoa, A. Rahman, C. Staus, H. Tashiro, C. Tsai, P. Vandervoorn, L. Yang, J. Y. Yeh, and P. Bai, “A 22-nm SoC platform technology featuring 3-D tri-gate and high-κ/metal gate, optimized for ultra low power, high performance and high density SoC applications,” in IEDM Tech. Dig., pp. 3.1. 1-3.1. 4, 2012.
[6] S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, P. Packan, P. Nayak, S. Ramey, S. Natarajan, “Transistor aging and reliability in 14nm tri-gate technology,” in Reliability Physics Symposium (IRPS), 2015 IEEE International, pp. 2F. 2.1-2F. 2.5, 2015.
[7] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Dacuna Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, and A. Yeoh, “A 10-nm High Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Inte rconnects,” in IEDM Tech. Dig., pp. 29.1. 1-29.1. 4, 2017.
[8] S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, “High mobility CMOS technologies using III–V/Ge channels on Si platform,” Solid-State Electronics, vol. 88, pp. 2-8, 2013.
[9] W. Y. Choi, “Comparative Study of Tunneling Field-Effect Transistors and Metal–Oxide–Semiconductor Field-Effect Transistors,” Japanese Journal of Applied Physics, vol. 49, p. 04DJ12, 2010.
[10] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, pp. 317-23, 2011.
[11] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Applied Physics Letters, vol. 76, pp. 2244-2246, 2000.
[12] M. Yokoyama, K. Nishi, S. Kim, H. Yokoyama, M. Takenaka, and S. Takagi, “Self-aligned Ni-GaSb source/drain junctions for GaSb p-channel metal-oxide semiconductor field-effect transistors,” Applied Physics Letters, vol. 104, pp. 093509, 2014.
[13] A. Nainani, Z. Yuan, T. Krishnamohan, B. R. Bennett, J. B. Boos, M. Reason, M. G. Ancona, Y. Nishi, and K. C. Saraswat, “InxGa1-xSb channel p-metal-oxide-semiconductor field effect transistors: Effect of strain and heterostructure design,” Journal of Applied Physics, vol. 110, p. 014503, 2011.
[14] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, p. 5815, 2001.
[15] R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, “Capacitance voltage measurements on n-type InAs MOS diodes,” Solid-State Electronics, vol. 14, pp. 115-124, 1971.
[16] G. J. Gualtieri, G. P. Schwartz, J. E. Griffiths, C. D. Thurmond, and B. Schwartz, “Oxide-Substrate and Oxide-Oxide Chemical Reactions in Thermally Annealed Anodic Films on GaSb, GaAs, and GaP,” J. Electrochem. Soc, vol. 127, p. 2488, 1980.
[17] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello “Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, p. 2297, 1996.
[18] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, “Passivation of GaAs using (Ga2O3)1?x(Gd2O3)x, 0?x?1.0 films,” Applied Physics Letters, vol. 75, pp. 1116-1118, 1999.
[19] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation,” Science, vol. 283, pp. 1897-1900, 1999.
[20] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, pp. 111-31, 2010.
[21] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,” IEEE Electron Device Letters, vol. 24, pp. 209-211, 2003.
[22] P. D. Ye and S. Oktyabrsky, “Fundamentals of III-V Semiconductor MOSFETs,” New York: Springer-Verlag, 2010.
[23] C. H. Fu, Y. H. Lin, W. C. Lee, T. D. Lin, R. L. Chu, L. K. Chu, P. Chang, M. H. Chen, W. J. Hsueh, S. H. Chen, G. J. Brown, J. I. Chyi, J. Kwo, and M. Hong, “Self-aligned inversion-channel n-InGaAs, p-GaSb, and p-Ge MOSFETs with a common high κ gate dielectric using a CMOS compatible process,” Microelectronic Engineering, vol. 147, pp. 330-334, 2015.
[24] M. Xu, R. Wang, and P. D. Ye, “GaSb Inversion-Mode PMOSFETs With Atomic-Layer-Deposited Al2O3 as Gate Dielectric,” IEEE Electron Device Letters, vol. 32, pp. 883-885, 2011.
[25] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-κ Gate Dielectrics,” IEEE Electron Device Letters, vol. 31, pp. 189-191, 2010.
[26] A. S. Babadi, E. Lind, and L. E. Wernersson, “Modeling of n-InAs metal oxide semiconductor capacitors with high-κ gate dielectric,” Journal of Applied Physics, vol. 116, p. 214508, 2014.
[27] H. D. Trinh, Y. C. Lin, H. C. Wang, C. H. Chang, K. Kakushima, H. Iwai, T. Kawanago, Y. G. Lin, C. M. Chen, Y. Y. Wong, G. N. Huang, M. Hudait, and E. Y. Chang, “Effect of Postdeposition Annealing Temperatures on Electrical Characteristics of Molecular-Beam -Deposited HfO2 on n-InAs/InGaAs Metal–Oxide–Semiconductor Capacitors,” Applied Physics Express, vol. 5, p. 021104, 2012.
[28] D. Wheeler, L. E. Wernersson, L. Froberg, C. Thelander, A. Mikkelsen, K. J. Weststrate, A. Sonnet, E.M. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectronic Engineering, vol. 86, pp. 1561-1563, 2009.
[29] Y. S. Kang, H. K. Kang, D. K. Kim, K. S. Jeong, M. Baik, Y. An, H. Kim, J. D. Song, and M. H. Cho, “Structural and Electrical Properties of EOT HfO2 (<1 nm) Grown on InAs by Atomic Layer Deposition and Its Thermal Stability,” ACS Appl Mater Interfaces, vol. 8, pp. 7489-98, 2016.
[30] C. A. Lin, M. L. Huang, P. C. Chiu, H. K. Lin, J. I. Chyi, T. H. Chiang, W. C. Lee, Y. C. Chang, Y. H. Chang, G. J. Brown, J. Kwo, and M. Hong, “InAs MOS devices passivated with molecular beam epitaxy-grown Gd2O3 dielectrics,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, p. 02B118, 2012.
[31] J. W. Hsu, C. H. Hsieh, W. J. Hsueh, P. C. Chiu, and J. I. Chyi, “Interfacial and Electrical Properties of in-situ and ex-situ Atomic Layer Deposited HfO2/InAs MOS Capacitor,” International Electron Devices and Materials Symposium, 2013.
[32] H. D. Trinh, G. Brammertz, E. Y. Chang, C. I. Kuo, C. Y. Lu, Y. C. Lin, H. Q. Nguyen, Y. Y. Wong, B. T. Tran, K. Kakushima, and H. Iwai, “Electrical Characterization of Al2O3/n-InAs Metal-Oxide -Semiconductor Capacitors With Various Surface Treatments,” IEEE Electron Device Letters, vol. 32, pp. 752-754, 2011.
[33] H. D. Trinh, E. Y. Chang, Y. Y. Wong, C. C. Yu, C. Y. Chang, Y. C. Lin, H. Q. Nguyen, and B. T. Tran, “Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs,” Japanese Journal of Applied Physics, vol. 49, p. 111201, 2010.
[34] J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L. E. Wernersson, “Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates,” Applied Physics Letters, vol. 100, p. 132905, 2012.
[35] W. J. Hsueh, G. B. He, C. Y. Chen, and J. I. Chyi, “Low Interface Trap Density HfO2/Al2O3/InAs MOS Capacitors Prepared by Nitrogen Plasma Treatment,” Compound Semiconductor Week, 2017.
[36] A. Nainani, T. Irisawa, Z. Yuan, Y. Sun, T. Krishnamohan, M. Reason, B. R. Bennett, J. B. Boos, M. G. Ancona, Y. Nishi, and K. C. Saraswat, “Development of high-k dielectric for antimonides and a sub 350 oC III-V pMOSFET outperforming Germanium,” in IEDM Tech. Dig., pp. 6.4.1-6.4.4, 2010.
[37] I. Geppert, M. Eizenberg, A. Ali, and S. Datta, “Band offsets determination and interfacial chemical properties of the Al2O3/GaSb system,” Applied Physics Letters, vol. 97, p. 162109, 2010.
[38] A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, “Optimization of the Al2O3 GaSb Interface and a High-Mobility GaSb pMOSFET,” IEEE Transactions on Electron Devices, vol. 58, pp. 3407-3415, 2011.
[39] A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, “Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al2O3,” Applied Physics Letters, vol. 97, p. 143502, 2010.
[40] M. Barth, G. Bruce Rayner, S. McDonnell, R. M. Wallace, B. R. Bennett, R. E. Herbert, and S. Datta, “High quality HfO2/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8?nm equivalent oxide thickness,” Applied Physics Letters, vol. 105, p. 222103, 2014.
[41] L. B. Ruppalt, E. R. Cleveland, J. G. Champlain, S. M. Prokes, J. B. Boos, D. Park, and B. R. Bennett, “Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure,” Applied Physics Letters, vol. 101, p. 231601, 2012.
[42] C. Merckling, X. Sun, A. Alian, G. Brammertz, V. V. Afanas’ev, T. Y. Hoffmann, M. Heyns, M. Caymax, and J. Dekoster, “GaSb molecular beam epitaxial growth on p-InP(001) and passivation with in situ deposited Al2O3 gate oxide,” Journal of Applied Physics, vol. 109, p. 073719, 2011.
[43] D. M. Zhernokletov, H. Dong, B. Brennan, J. Kim, R. M. Wallace, M. Yakimov, V. Tokranov, and S. Oktyabrsky, “Investigation of arsenic and antimony capping layers, and half cycle reactions during atomic layer deposition of Al2O3 on GaSb(100),” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, p. 060602, 2013.
[44] R. L. Chu, W. J. Hsueh, T. H. Chiang, W. C. Lee, H. Y. Lin, T. D. Lin, G. J. Brown, J. I. Chyi, T. S. Huang, T. W. Pi, J. Kwo, and M. Hong, “Surface Passivation of GaSb(100) Using Molecular Beam Epitaxy of Y2O3and Atomic Layer Deposition of Al2O3: A Comparative Study,” Applied Physics Express, vol. 6, p. 121201, 2013.
[45] R. L. Chu, T. H. Chiang, W. J. Hsueh, K. H. Chen, K. Y. Lin, G. J. Brown, J. I. Chyi, J. Kwo, and M. Hong, “Passivation of GaSb using molecular beam epitaxy Y2O3 to achieve low interfacial trap density and high-performance self-aligned inversion-channel p-metal-oxide -semiconductor field-effect-transistors,” Applied Physics Letters, vol. 105, p. 182106, 2014.
[46] Y. H. Lin, K. Y. Lin, W. J. Hsueh, L. B. Young, T. W. Chang, J. I. Chyi, T. W. Pi, J. Kwo, and M. Hong, “Interfacial characteristics of Y2O3 /GaSb(001) grown by molecular beam epitaxy and atomic layer deposition,” Journal of Crystal Growth, vol. 477, pp. 164-168, 2017.
[47] N. Miyata, A. Ohtake, M. Ichikawa, T. Mori, and T. Yasuda, “Electrical characteristics and thermal stability of HfO2 metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces,” Applied Physics Letters, vol. 104, p. 232104, 2014.
[48] M. Yokoyama, H. Yokoyama, M. Takenaka, and S. Takagi, “Impact of interfacial InAs layers on Al2O3/GaSb metal-oxide-semiconductor interface properties,” Applied Physics Letters, vol. 106, 2015.
[49] W. J. Hsueh, C. Y. Chen, C. M. Chang, J. I. Chyi, and M. L. Huang, “Effects of GaSb surface preparation on the characteristics of HfO2/Al2O3/GaSb metal-oxide-semiconductor capacitors prepared by atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 35, p. 01B106, 2017.
[50] W. J. Hsueh, K. H. Su, C. Y. Chen, and J. I. Chyi, “Improving the characteristics of HfO2/Al2O3/GaSb MOSCAPs using sequential hydrogen plasma and nitrogen plasma treatments,” Compound Semiconductor Week, 2017.
[51] A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Progress in Solid State Chemistry, vol. 10, pp. 157-191, 1975.
[52] T. Suntola and J. Antson, “METHOD FOR PRODUCING COMPOUND THN FILMS,” vol. US4058430, 1977.
[53] Atom structure from internet “https://pubchem.ncbi.nlm.nih.gov/#,”.
[54] C. Detavernier, J. Dendooven, S. P. Sree, K. F. Ludwig, and J. A. Martens, “Tailoring nanoporous materials by atomic layer deposition,” Chem. Soc. Rev., vol. 40, pp. 5242-53, 2011.
[55] J. W. Hsu, “Interfacial and Electrical Properties of Atomic Layer Deposited HfO2/InAs MOS Capacitor,” Master′s Thesis, Electrical Engineering, National Central University, Taiwan, 2012.
[56] X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T. E. Seidel, J. T. Barton, D. Pang, and R. G. Gordon, “ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone,” Journal of The Electrochemical Society, vol. 152, p. G213, 2005.
[57] T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, “Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices,” Applied Physics Letters, vol. 82, pp. 2883-2885, 2003.
[58] G. Pardon, H. K. Gatty, G. Stemme, W. vander Wijngaart, and N. Roxhed, “Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores,” Nanotechnology, vol. 24, p. 015602, 2013.
[59] W. Barvosa-Carter, R. S. Ross, C. Ratsch, F. Grosse, J. H. G. Owen, and J. J. Zinck, “Atomic scale structure of InAs(001)-(2×4) steady-state surfaces determined by scanning tunneling microscopy and density functional theory,” Surface Science, vol. 499, pp. L129-L134, 2002.
[60] A. Nemcsics and J. Takacs, “Modeling of the hysteretic phenomena in RHEED intensity variation versus temperature for GaAs and InAs surfaces,” Semiconductors, vol. 45, pp. 91-95, 2011.
[61] C. Y. Chien, J. W. Hsu, P. C. Chiu, J. I. Chyi, and P. W. Li, “Gate Stack Engineering and Thermal Treatment on Electrical and Interfacial Properties of Ti/Pt/HfO2/InAs pMOS Capacitors,” Active and Passive Electronic Components, vol. 2012, pp. 1-6, 2012.
[62] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices, Third Edition,” 2007.
[63] J. Robertson and B. Falabretti, “Band offsets of high-κ gate oxides on III-V semiconductors,” Journal of Applied Physics, vol. 100, p. 014111, 2006.
[64] H. Y. Lin, S. L. Wu, C. C. Cheng, C. H. Ko, C. H. Wann, Y. R. Lin, S. J. Chang, and T.B. Wu, “Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors,” Applied Physics Letters, vol. 98, p. 123509, 2011.
[65] R. Winter, J. Ahn, P. C. McIntyre, and M. Eizenberg, “New method for determining flat-band voltage in high mobility semiconductors,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, p. 030604, 2013.
[66] A. Ali, H. Madan, S. Koveshnikov, and S. Datta, “Small Signal Response of Inversion Layers in High Mobility In0.53Ga0.47As MOSFETs Made with Thin high-κ Dielectrics,” ECS Transactions, pp. 271-284, 2009.
[67] C. A. Richter, A. R. Hefner, and E. M. Vogel, “A comparison of quantum-mechanical capacitance-voltage simulators,” IEEE Electron Device Letters, vol. 22, pp. 35-37, 2001.
[68] T. W. Pi, H. Y. Lin, Y. T. Liu, T. D. Lin, G. K. Wertheim, J. Kwo, and M. Hong, “Atom-to-atom interactions for atomic layer deposition of trimethylaluminum on Ga-rich GaAs(001)-4 x 6 and As-rich GaAs(001)-2 x 4 surfaces: a synchrotron radiation photoemission study,” Nanoscale Res Lett, vol. 8, p. 169, 2013.
[69] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition, ” Applied Physics Letters, vol. 92, p. 071901, 2008.
[70] Y. C. Byun, C. H. An, S. H. Lee, M. H. Cho, and H. Kim, “Thermal Stability of ALD-HfO2/GaAs Pretreated with Trimethylaluminium,” Journal of The Electrochemical Society, vol. 159, p. G6, 2012.
[71] P. C. Jiang and J. S. Chen, “Effects of Post-Metal Annealing on Electrical Characteristics and?Thermal Stability?of W2N/Ta2O5/Si MOS Capacitors,” Journal of The Electrochemical Society, vol. 151, p. G751, 2004.
[72] J. Hu and H. S. Philip Wong, “Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs,” Journal of Applied Physics, vol. 111, p. 044105, 2012.
[73] R. J. Carter, E. Cartier, A. Kerber, L. Pantisano, T. Schram, S. De Gendt, and M. Heyns, “Passivation and interface state density of SiO2/HfO2-based/polycrystalline-Si gate stacks,” Applied Physics Letters, vol. 83, pp. 533-535, 2003.
[74] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Applied Physics Letters, vol. 81, pp. 472-474, 2002.
[75] E. J. Kim, L. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, “Border traps in Al2O3/In0.53Ga0.47As (100) gate stacks and their passivation by hydrogen anneals,” Applied Physics Letters, vol. 96, p. 012906, 2010.
[76] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique,” Bell System Technical Journal, vol. 46, pp. 1055-1133, 1967.
[77] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electronics, vol. 5, pp. 285-299, 1962.
[78] D. V. Lang, “Deep?level transient spectroscopy: A new method to characterize traps in semiconductors,” Journal of Applied Physics, vol. 45, pp. 3023-3032, 1974.
[79] M. Kuhn, “A quasi-static technique for MOS C-V and surface state measurements,” Solid-State Electronics, vol. 13, pp. 873-885, 1970.
[80] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors,” IEEE Transactions on Electron Devices, vol. 31, pp. 42-53, 1984.
[81] J. A. Miller, C. Blat, and E. H. Nicollian, “Accurate measurement of trivalent silicon interface trap density using small signal steady?state methods,” Journal of Applied Physics, vol. 66, pp. 716-721, 1989.
[82] P. V. Gray and D. M. Brown, “DENSITY OF SiO2–Si INTERFACE STATES,” Applied Physics Letters, vol. 8, pp. 31-33, 1966.
[83] R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces,” Journal of Applied Physics, vol. 108, p. 124101, 2010.
[84] J. Albohn, W. Fussel, N. D. Sinh, K. Kliefoth, and W. Fuhs, “Capture cross sections of defect states at the Si/SiO2 interface,” Journal of Applied Physics, vol. 88, pp. 842-849, 2000.
[85] G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, “Characteristic trapping lifetime and capacitance-voltage measurements of GaAs metal-oxide-semiconductor structures,” Applied Physics Letters, vol. 91, p. 133510, 2007.
[86] N. Bouarissa and H. Aourag, “Effective masses of electrons and heavy holes in InAs, InSb, GaSb, GaAs and some of their ternary compounds,” Infrared Physics & Technology, vol. 40, pp. 343-349, 1999.
[87] A. R. Clawson, “Guide to references on III–V semiconductor chemical etching,” Materials Science and Engineering: R: Reports, vol. 31, pp. 1-438, 2001.
[88] Y. Xuan, H. C. Lin, and P. D. Ye, “Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited high-κ Dielectrics,” IEEE Transactions on Electron Devices, vol. 54, pp. 1811-1817, 2007.
[89] S. H. Kim, D. M. Geum, M. S. Park, and W. J. Choi, “In0.53Ga0.47As-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors Utilizing Y2O3 Buried Oxide,” IEEE Electron Device Letters, vol. 36, pp. 451-453, 2015.
[90] D. H. van Dorp, S. Arnauts, F. Holsteyns, and S. De Gendt, “Wet-Chemical Approaches for Atomic Layer Etching of Semiconductors: Surface Chemistry, Oxide Removal and Reoxidation of InAs (100),” ECS Journal of Solid State Science and Technology, vol. 4, pp. N5061-N5066, 2015.
[91] P. Motamedi and K. Cadien, “XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition,” Applied Surface Science, vol. 315, pp. 104-109, 2014.
[92] P. D. C. King, T. D. Veal, H. Lu, S. A. Hatfield, W. J. Schaff, and C. F. McConville, “The influence of conduction band plasmons on core-level photoemission spectra of InN,” Surface Science, vol. 602, pp. 871-875, 2008.
[93] S. Jewett, D. Zemlyanov, and A. Ivanisevic, “Characterization of peptide adsorption on InAs using X-ray photoelectron spectroscopy,” Langmuir, vol. 27, pp. 3774-82, 2011.
[94] F. C. Sun, M. T. Kesim, Y. Espinal, and S. P. Alpay, “Are ferroelectric multilayers capacitors in series?,” Journal of Materials Science, vol. 51, pp. 499-505, 2015.
[95] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering,” Journal of Applied Physics, vol. 90, pp. 4587-4608, 2001.
[96] S. Stemmer, V. Chobpattana, and S. Rajan, “Frequency dispersion in III-V metal-oxide-semiconductor capacitors,” Applied Physics Letters, vol. 100, p. 233510, 2012.
[97] R. V. Galatage, D. M. Zhernokletov, H. Dong, B. Brennan, C. L. Hinkle, R. M. Wallace, and E. M. Vogel, “Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states,” Journal of Applied Physics, vol. 116, p. 014504, 2014.
[98] Y. Urabe, N. Miyata, H. Ishii, T. Itatani, T. Maeda, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Yokoyama, N. Taoka, M. Takenaka, and S. Takagi, “Correlation between channel mobility improvements and negative Vth shifts in III-V MISFETs: Dipole fluctuation as new scattering mechanism,” in IEDM Tech. Dig., pp. 6.5.1-6.5.4, 2010.
[99] E. R. Cleveland, L. B. Ruppalt, B. R. Bennett, and S. M. Prokes, “Effect of an in situ hydrogen plasma pre-treatment on the reduction of GaSb native oxides prior to atomic layer deposition,” Applied Surface Science, vol. 277, pp. 167-175, 2013.
[100] S. McDonnell, B. Brennan, E. Bursa, R. M. Wallace, K. Winkler, and P. Baumann, “GaSb oxide thermal stability studied by dynamic-XPS,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 32, p. 041201, 2014.
[101] J. Robertson, Y. Guo, and L. Lin, “Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices,” Journal of Applied Physics, vol. 117, p. 112806, 2015.
[102] T. W. Pi, H. Y. Lin, T. H. Chiang, Y. T. Liu, Y. C. Chang, T. D. Lin, G. K. Wertheime, J. Kwo, and M. Hong, “Surface atoms core-level shifts in single crystal GaAs surfaces: Interactions with trimethylaluminum and water prepared by atomic layer deposition,” Applied Surface Science, vol. 284, pp. 601-610, 2013.
[103] J. Ahn, T. Kent, E. Chagarov, K. Tang, A. C. Kummel, and P. C. McIntyre, “Arsenic decapping and pre-atomic layer deposition trimethylaluminum passivation of Al2O3/InGaAs(100) interfaces,” Applied Physics Letters, vol. 103, p. 071602, 2013.
[104] Y. R. Luo, “Bond Dissociation Energies,” from internet “ http://staff.ustc.edu.cn/~luo971/2010-91-CRC-BDEs-Tables.pdf. ,”.
[105] Y. H. Chang, M. L. Huang, P. Chang, J. Y. Shen, B. R. Chen, C. L. Hsu, M. Hong, and J. Kwo, “In situ atomic layer deposition and synchrotron-radiation photoemission study of Al2O3 on pristine n-GaAs(001)-4×6 surface,” Microelectronic Engineering, vol. 88, pp. 1101-1104, 2011.
[106] V. Miikkulainen, M. Leskela?, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” Journal of Applied Physics, vol. 113, p. 021301, 2013.
[107] K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, M. Lanza, M. Lanza, and G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectronic Engineering, vol. 88, pp. 1272-1275, 2011.
[108] B. Rajamohanan, D. Mohata, Y. Zhu, M. Hudait, Z. Jiang, M. Hollander, Z. Jiang, M. Hollander, G. Klimeck, and S. Datta, “Design, fabrication, and analysis of p-channel arsenide/antimonide hetero-junction tunnel transistors,” Journal of Applied Physics, vol. 115, p. 044502, 2014.
[109] H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, “The advent of multilayer antimonene nanoribbons with room temperature orange light emission,” Chem Commun (Camb), vol. 52, pp. 8409-12, 2016.
[110] P. Skeath, C. Y. Su, I. Lindau, and W. E. Spicer, “Comparative study of Fermi energy pinning and adatom bond character: Antimony versus the column 3 elements (Al, Ga, In) on GaAs (110) and GaSb (110),” Journal of Applied Physics, vol. 57, pp. 5089-5092, 1985.
[111] R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, X. Miao, J. Sporre, J. Fronheiser, N. Loubet1, M. Sung, S. Sieg, S. Mochizuki1, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonte, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H.P. Amanapu, Z. Bi, J. Cha, H. C. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian1, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta1, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow1, S. Lee, A. Knorr, H. Bu, and M. Khare, “A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels,” in IEDM Tech. Dig., pp. 2.7.1-2.7.4, 2016.
[112] J. S. Yoon, K. Kim, T. Rim, and C. K. Baek, “Performance and Variations Induced by Single Interface Trap of Nanowire FETs at 7-nm Node,” IEEE Transactions on Electron Devices, vol. 64, pp. 339-345, 2017.
[113] W. Lu, J. K. Kim, J. F. Klem, S. D. Hawkins, and J. A. del Alamo, “An InGaSb p-channel FinFET,” in IEDM Tech. Dig., pp. 31.6.1-31.6.4, 2015. |