博碩士論文 985401027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:134 、訪客IP:18.226.163.103
姓名 薛惟仁(Wei-Jen Hsueh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦與銻化鎵金氧半電容之界面特性研究
(Characterization of the Interface of InAs and GaSb Metal-Oxide-Semiconductor Capacitors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以矽為主體的積體電路科技依摩爾定律於過去50年間發展迅速,成為資訊時代發展之主要動力。然而僅靠元件尺寸的微縮已不足以解決積體電路在元件性能、功耗與製造成本上所面臨的問題。因此,在晶圓技術進入10奈米世代之後,尋找適當電晶體材料突破上述瓶頸已是當務之急。砷化銦(InAs)材料因具窄能隙與高電子遷移率的優點,於未來可應用於低操作電壓之N型通道材料,而銻化鎵(GaSb)則具備高電洞遷移率的優勢可應用於P型通道材料,砷化銦與銻化鎵是最符合低耗能高速邏輯電路的化合物半導體材料組合。然而,砷化銦與銻化鎵的金氧半(Metal-Oxide-Semiconductor)界面缺陷密度仍是影響金氧半場效電晶體性能的關鍵性問題。本研究的主旨為開發具有低界面缺陷能態密度之砷化銦與銻化鎵金氧半電容,研究內容囊括臨場式、非臨場式與氣體電漿表面處理製程技術,並研析這些製程技術對砷化銦與銻化鎵金氧半電容界面特性的影響。
  為研發臨場式金氧半電容製作技術,此研究所使用的分子束磊晶系統與原子層沉積系統是以一超高真空傳輸腔體連接,以避免磊晶片暴露大氣產生原生氧化物,而對金氧半界面造成影響。藉由分子束磊晶技術可控制磊晶片表面原子重建狀態,經超高真空傳輸腔體可維持表面原子排序狀況下傳送至原子層沉積系統。經過有系統地調整磊晶參數與表面原子狀態,以臨場式製作的氧化鉿/砷化銦金氧半電容經電導法計算之中間能帶界面缺陷能態密度為2.12 × 10E12 cm-2eV-1;用臨場式製作的氧化鉿/氧化鋁/銻化鎵金氧半電容之中間能帶界面缺陷能態密度為1.86 × 10E12 cm-2eV-1。以臨場式製程製作銻化鎵金氧半電容須特別注意表面重建狀態,因為過多銻原子堆積之表面狀態將導致氧化鉿三維島狀沉積,劣化元件之電性,本論文亦針對此現象提出其物理沉積模型。
  臨場式製程技術雖具良好的氧半電容界面特性,為因應未來三維結構為主的鰭式、奈米層片狀或全包覆式金氧半場效電晶體製程趨勢,本研究亦探討非臨場式製程方法,如使用化學溶液處理磊晶片,再製作成金氧半電容。於砷化銦材料部份,經鹽酸處理的氧化鉿/氧化鋁/砷化銦電容之界面缺陷能態密度為1.3 × 10E12 cm-2eV-1在銻化鎵材料方面,用鹽酸處理的氧化鉿/氧化鋁/銻化鎵金氧半電容之界面缺陷能態密度為5.3 × 10E13 cm-2eV-1。
  於非臨場式的研究結果得知,僅使用化學溶液進行化學處理的界面特性優化之成效有限,吾人提出一混合式界面處理法,即先使用化學溶液去除原生氧化層,再於電漿式原子層沉積系統進行表面電漿處理與高介電材料沉積。以鹽酸搭配氮氣電漿處理所製作的氧化鉿/氧化鋁/砷化銦電容之中間能帶界面缺陷能態密度可降至7.6 × 10E11 cm-2eV-1。此外,吾人發現氫氣電漿易使砷化銦材料表面產生銦原子簇集現象,而使用氮氣電漿則可使晶片表面產生氮化披覆層,有助於獲得較佳之表面狀態,本論文中對該物理現象亦提出一沉積模型說明之。在銻化鎵材料部份,吾人發現使用鹽酸結合氮氣電漿會使銻化鎵電容產生費米能階釘札現象而無法調控載子,於是本研究開發了階段式電漿處理製程技術,此技術為先以氫氣電漿處理而產生氧化鎵鈍化層後,再使用氮氣電漿進行氮化處理而產生氮氧化鎵界面層,以此法製作之氧化鉿/氧化鋁/銻化鎵電容之界面缺陷能態密度可達6.4 × 10E12 cm-2eV-1。
  綜上所述,臨場式製程可降低砷化銦與銻化鎵金氧半電容之界面缺陷與解決費米能階釘札現象。在非臨場式狀況下,吾人結合化學溶液處理與原子層沉積系統電漿處理之混合式製程,可使砷化銦與銻化鎵電容維持低界面缺陷能態密度、低閘極漏電流、高電容調變率與高閘極電容值。此界面處理技術適用於常見之三維電晶體製程,極具實用性,未來將可應用於砷化銦與銻化鎵組合的低耗能邏輯電路。
摘要(英) Over the last 50 years, Si-based complementary metal-oxide-semiconductor (CMOS) technology has advanced closely following Moore’s Laws, which has in turn facilitated the development of information technology era. However, device scaling of integrated circuits has encountered severe challenges in device performance, power consumption and manufacturing costs. Finding appropriate materials and technologies to solve these problems is the top priority in semiconductor industry. In this research, we study and fabricate low interface trap density (Dit) InAs and GaSb metal-oxide-semiconductor capacitors (MOSCAPs), and explore the possibility of using these two materials for next generation n- and p-channel three dimensional transistors. InAs is a narrow bandgap material having high electron mobility, which makes it suitable for low power n-channel transistors. GaSb, on the other hand, has high hole mobility and is a good candidate for low power p-channel devices. However, both InAs and GaSb suffer from high Dit at the oxide-semiconductor interface, which limits the modulation of carriers in the channel. In this study, we investigate three processes, including in-situ, ex-situ, and nitrogen/hydrogen plasma treatments for fabricating InAs and GaSb MOSCAPs, and correlate these treatments with the characteristics of the MOSCAPs.
 To avoid the notorious native oxides, which sabotage the electrical characteristics of InAs and GaSb MOSCAPs, in-situ preparation of the samples are carried out by connecting the molecular beam epitaxy (MBE) system with the ALD system via an ultra-high vacuum (UHV) transfer tube. HfO2/InAs MOSCAPs prepared by this method exhibit a Dit of 2.21 × 10E12 cm-2eV-1 at the mid-gap as estimated by conductance method. As for GaSb MOSCAPs, devices fabricated on the Sb-stabilized (1 × 3) surface exhibit a Dit as low as 1.86 × 10E12 cm-2eV-1 near the mid-gap, while the devices fabricated on the Sb-rich (2 × 5) surface exhibit short-circuit behavior. This is attributed to the presence of excessive Sb clusters, which cause island growth during the deposition of dielectric films. A physical model is proposed to explain the mechanism.
 Since three-dimensional transistors, such as fin field-effect transistors (FinFETs), nano-sheet transistors (NSTs), and gate-all-around (GAA) MOSFETs, are the mainstream devices, ex-situ processes for fabricating InAs and GaSb MOSCAPs have also been developed. Using chemical solution treatment, optimized trimethylaluminium (TMAl) surface treatment and post metal annealing (PMA) processes, Dit of 1.3 × 10E12 cm-2eV-1 is achieved on HfO2/Al2O3/InAs MOSCAPs and 5.3 × 10E13 cm-2eV-1 on GaSb MOSCAPs.
 To further reduce the density of interface states, an ex-situ process consisting of HCl solution chemical treatment and nitrogen plasma treatment has been developed for fabricating HfO2/Al2O3/InAs MOSCAPs, which exhibit a Dit of 7.6 × 10E11 cm-2eV-1 near the mid-gap. The reduction of Dit is attributed to the formation of a nitride layer on the InAs surface. It is also found that hydrogen plasma is much more reactive than nitrogen plasma, and tends to induce indium clusters on InAs surface, resulting in high leakage current. For GaSb MOSCAPs, a sequential treatment by HCl chemical cleaning and nitrogen plasma surface treatment leads to Fermi level pinning at the oxide/GaSb surface. Using HCl chemical cleaning and hydrogen plasma treatment, however, there forms a layer of GaOx on the surface. Subsequent nitrogen plasma treatment then leads to the formation of a GaON layer. HfO2/Al2O3/GaSb MOSCAPs prepared by this sequential plasma treatment process show an Dit of 6.4 × 10E12 cm-2eV-1.
 The aforementioned results demonstrate that low Dit and unpinned surface of InAs and GaSb MOSCAPs can be obtained by in-situ processes. Meanwhile, InAs and GaSb MOSCAPs with high capacitance, low leakage, low Dit, and high capacitance modulation can also be fabricated by using ex-situ processes, consisting of chemical solution treatment and plasma treatment in ALD system. These surface treatment techniques can be readily applied to the fabrication of future three dimensional transistors for low power consumption CMOS integrated circuits.
關鍵字(中) ★ 砷化銦
★ 銻化鎵
★ 金氧半電容
★ 臨場式
★ 非臨場式
★ 電漿式原子層沉積系統
★ 分子束磊晶技術
關鍵字(英) ★ InAs
★ GaSb
★ MOSCAP
★ in-situ
★ ex-situ
★ plasma ALD
★ MBE
論文目次 論文摘要...................................................................I
Abstract.................................................................III
誌謝......................................................................VI
Contents................................................................VIII
Figure Captions............................................................X
Table Captions...........................................................XVI
Chapter 1 Introduction.....................................................1
 1-1 Motivation...........................................................1
 1-2 Why InAs and GaSb....................................................3
 1-3 Challenges...........................................................5
 1-4 Literature review....................................................7
 1-5 Dissertation Structure..............................................11
Chapter 2 InAs MOS capacitors prepared by the in-situ process.............13
 2-1 Introduction........................................................13
 2-2 In-situ transfer system.............................................14
 2-3 HfO2/InAs MOS capacitors............................................17
  2-3-1 InAs wafer preparation..........................................17
  2-3-2 Interfacial analysis............................................19
  2-3-3 MOSCAPs fabrication.............................................20
 2-4 Analysis of the electrical properties of HfO2/InAs MOS capacitors...21
  2-4-1 HfO2/InAs MOSCAPs operation and C-V characteristics.............21
  2-4-2 HfO2/InAs MOSCAPs I-V and C-V measurement.......................22
  2-4-3 TMAl surface treatment..........................................25
  2-4-4 PMA process.....................................................29
  2-4-5 Interface trap density extraction...............................30
  2-4-6 Temperature-dependent C-V measurement...........................35
 2-5 Summary.............................................................41
Chapter 3 Preparation of InAs MOS capacitors by the ex-situ process.......42
 3-1 Introduction........................................................42
 3-2 Chemical cleaning treatment.........................................44
 3-3 Bi-layer HfO2/Al2O3/InAs MOS Capacitors.............................49
 3-4 Plasma treatment process............................................53
 3-5 Preparation of HfO2/Al2O3/InAs MOSCAPs by nitrogen plasma treatment.58
 3-6 Summary.............................................................69
Chapter 4 Preparation of GaSb MOS capacitors by the in-situ process.......70
 4-1 Introduction........................................................70
 4-2 Effects of GaSb surface preparation.................................72
 4-3 Characteristics of the HfO2/Al2O3/GaSb interface....................75
 4-4 Electric characteristics of HfO2/Al2O3/GaSb MOS capacitors..........80
 4-5 Summary.............................................................83
Chapter 5 Preparation of GaSb MOS capacitors by the ex-situ process.......84
 5-1 Introduction........................................................84
 5-2 Chemical / plasma treatment for HfO2/Al2O3/GaSb capacitors..........85
 5-3 Improving the GaSb MOSCAPs’ characteristics by hydrogen plasma and
   nitrogen plasma treatment...........................................92
 5-4 Summary............................................................100
Chapter 6 Conclusions and Future Work....................................101
 6-1 Conclusion.........................................................101
 6-2 Suggestions for Future Work........................................103
References...............................................................105
Appendix A Fabrication and characterization of Al2O3/InAs nano-sheet
      transistors...................................................118
Appendix B Suppressing Ge diffusion by GaAsSb barriers in molecular beam
      epitaxy of InGaAs on Ge.......................................125
Appendix C Development of a gate-stack process for both Ge and InGaAs
      junctionless FinFETs..........................................137
Publication list.........................................................153
參考文獻 [1] C. H. Jan, “10 years of transistor innovations in System-on-Chip (SoC) era,” in Solid-State and Integrated Circuit Technology (ICSICT), 12th IEEE International Conference on, pp. 1-4, 2014.
[2] C. H. Jan, P. Bai, J. Choi, G. Curello, S. Jacobs, J. Jeong, K. Johnson, D. Jones, S. Klopcic, J. Lin, N. Lindert, A. Lio, S. Natarajan, J. Neirynck, P. Packan, J. Park, I. Post, M. Patel, S. Ramey, P. Reese, L. Rockford, A. Roskowski, G. Sacks, B. Turkot, Y. Wang, L. Wei, J. Yip, I. Young, K. Zhang, Y. Zhang, M. Bohr, and B. Holt, “A 65-nm ultra low power logic platform technology using uni-axial strained silicon transistors,” in IEDM Tech. Dig., pp. 60-63, 2005.
[3] C. H. Jan, P. Bai, S. Biswas, M. Buehler, Z.-P. Chen, G. Curello, S. Gannavaram, W. Hafez, J. He, J. Hicks, U. Jalan, N. Lazo, J. Lin, N. Lindert, C. Litteken, M. Jones, M. Kang, K. Komeyli, A. Mezhiba, S. Naskar, S. Olson, J. Park, R. Parker, L. Pei, I. Post, N. Pradhan, C. Prasad, M. Prince, J. Rizk, G. Sacks, H. Tashiro, D. Towner, C. Tsai, Y. Wang, L. Yang, J. Y. Yeh, J. Yip, and K. Mistry, “A 45-nm low power system-on-chip technology with dual gate (logic and I/O) high-κ/metal gate strained silicon transistors,” in IEDM Tech. Dig., pp. 1-4, 2008.
[4] P. VanDerVoorn, M. Agostinelli, S. J. Choi, G. Curello, H. Deshpande, M. A. El-Tanani, W. Hafez, U. Jalan, L. Janbay, M. Kang, K. J. Koh, K. Komeyli, H. Lakdawala, J. Lin, N. Lindert, S. Mudanai, J. Park, K. Phoa, A. Rahman, J. Rizk, L. Rockford, G. Sacks, K. Soumyanath, H. Tashiro, S. Taylor, C. Tsai, H. Xu, J. Xu, L. Yang, I. Young, J. Y. Yeh, J. Yip, P. Bai, and C. H. Jan, “A 32-nm low power RF CMOS SOC technology featuring high-κ/metal gate,” in VLSI Techn., pp. 137-138, 2010.
[5] C. H. Jan, U. Bhattacharya, R. Brain, S. J. Choi, G. Curello, G. Gupta, W. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, J. Park, K. Phoa, A. Rahman, C. Staus, H. Tashiro, C. Tsai, P. Vandervoorn, L. Yang, J. Y. Yeh, and P. Bai, “A 22-nm SoC platform technology featuring 3-D tri-gate and high-κ/metal gate, optimized for ultra low power, high performance and high density SoC applications,” in IEDM Tech. Dig., pp. 3.1. 1-3.1. 4, 2012.
[6] S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, P. Packan, P. Nayak, S. Ramey, S. Natarajan, “Transistor aging and reliability in 14nm tri-gate technology,” in Reliability Physics Symposium (IRPS), 2015 IEEE International, pp. 2F. 2.1-2F. 2.5, 2015.
[7] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Dacuna Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, and A. Yeoh, “A 10-nm High Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Inte rconnects,” in IEDM Tech. Dig., pp. 29.1. 1-29.1. 4, 2017.
[8] S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, “High mobility CMOS technologies using III–V/Ge channels on Si platform,” Solid-State Electronics, vol. 88, pp. 2-8, 2013.
[9] W. Y. Choi, “Comparative Study of Tunneling Field-Effect Transistors and Metal–Oxide–Semiconductor Field-Effect Transistors,” Japanese Journal of Applied Physics, vol. 49, p. 04DJ12, 2010.
[10] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, pp. 317-23, 2011.
[11] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Applied Physics Letters, vol. 76, pp. 2244-2246, 2000.
[12] M. Yokoyama, K. Nishi, S. Kim, H. Yokoyama, M. Takenaka, and S. Takagi, “Self-aligned Ni-GaSb source/drain junctions for GaSb p-channel metal-oxide semiconductor field-effect transistors,” Applied Physics Letters, vol. 104, pp. 093509, 2014.
[13] A. Nainani, Z. Yuan, T. Krishnamohan, B. R. Bennett, J. B. Boos, M. Reason, M. G. Ancona, Y. Nishi, and K. C. Saraswat, “InxGa1-xSb channel p-metal-oxide-semiconductor field effect transistors: Effect of strain and heterostructure design,” Journal of Applied Physics, vol. 110, p. 014503, 2011.
[14] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, p. 5815, 2001.
[15] R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, “Capacitance voltage measurements on n-type InAs MOS diodes,” Solid-State Electronics, vol. 14, pp. 115-124, 1971.
[16] G. J. Gualtieri, G. P. Schwartz, J. E. Griffiths, C. D. Thurmond, and B. Schwartz, “Oxide-Substrate and Oxide-Oxide Chemical Reactions in Thermally Annealed Anodic Films on GaSb, GaAs, and GaP,” J. Electrochem. Soc, vol. 127, p. 2488, 1980.
[17] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello “Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, p. 2297, 1996.
[18] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, “Passivation of GaAs using (Ga2O3)1?x(Gd2O3)x, 0?x?1.0 films,” Applied Physics Letters, vol. 75, pp. 1116-1118, 1999.
[19] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation,” Science, vol. 283, pp. 1897-1900, 1999.
[20] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, pp. 111-31, 2010.
[21] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,” IEEE Electron Device Letters, vol. 24, pp. 209-211, 2003.
[22] P. D. Ye and S. Oktyabrsky, “Fundamentals of III-V Semiconductor MOSFETs,” New York: Springer-Verlag, 2010.
[23] C. H. Fu, Y. H. Lin, W. C. Lee, T. D. Lin, R. L. Chu, L. K. Chu, P. Chang, M. H. Chen, W. J. Hsueh, S. H. Chen, G. J. Brown, J. I. Chyi, J. Kwo, and M. Hong, “Self-aligned inversion-channel n-InGaAs, p-GaSb, and p-Ge MOSFETs with a common high κ gate dielectric using a CMOS compatible process,” Microelectronic Engineering, vol. 147, pp. 330-334, 2015.
[24] M. Xu, R. Wang, and P. D. Ye, “GaSb Inversion-Mode PMOSFETs With Atomic-Layer-Deposited Al2O3 as Gate Dielectric,” IEEE Electron Device Letters, vol. 32, pp. 883-885, 2011.
[25] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-κ Gate Dielectrics,” IEEE Electron Device Letters, vol. 31, pp. 189-191, 2010.
[26] A. S. Babadi, E. Lind, and L. E. Wernersson, “Modeling of n-InAs metal oxide semiconductor capacitors with high-κ gate dielectric,” Journal of Applied Physics, vol. 116, p. 214508, 2014.
[27] H. D. Trinh, Y. C. Lin, H. C. Wang, C. H. Chang, K. Kakushima, H. Iwai, T. Kawanago, Y. G. Lin, C. M. Chen, Y. Y. Wong, G. N. Huang, M. Hudait, and E. Y. Chang, “Effect of Postdeposition Annealing Temperatures on Electrical Characteristics of Molecular-Beam -Deposited HfO2 on n-InAs/InGaAs Metal–Oxide–Semiconductor Capacitors,” Applied Physics Express, vol. 5, p. 021104, 2012.
[28] D. Wheeler, L. E. Wernersson, L. Froberg, C. Thelander, A. Mikkelsen, K. J. Weststrate, A. Sonnet, E.M. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectronic Engineering, vol. 86, pp. 1561-1563, 2009.
[29] Y. S. Kang, H. K. Kang, D. K. Kim, K. S. Jeong, M. Baik, Y. An, H. Kim, J. D. Song, and M. H. Cho, “Structural and Electrical Properties of EOT HfO2 (<1 nm) Grown on InAs by Atomic Layer Deposition and Its Thermal Stability,” ACS Appl Mater Interfaces, vol. 8, pp. 7489-98, 2016.
[30] C. A. Lin, M. L. Huang, P. C. Chiu, H. K. Lin, J. I. Chyi, T. H. Chiang, W. C. Lee, Y. C. Chang, Y. H. Chang, G. J. Brown, J. Kwo, and M. Hong, “InAs MOS devices passivated with molecular beam epitaxy-grown Gd2O3 dielectrics,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, p. 02B118, 2012.
[31] J. W. Hsu, C. H. Hsieh, W. J. Hsueh, P. C. Chiu, and J. I. Chyi, “Interfacial and Electrical Properties of in-situ and ex-situ Atomic Layer Deposited HfO2/InAs MOS Capacitor,” International Electron Devices and Materials Symposium, 2013.
[32] H. D. Trinh, G. Brammertz, E. Y. Chang, C. I. Kuo, C. Y. Lu, Y. C. Lin, H. Q. Nguyen, Y. Y. Wong, B. T. Tran, K. Kakushima, and H. Iwai, “Electrical Characterization of Al2O3/n-InAs Metal-Oxide -Semiconductor Capacitors With Various Surface Treatments,” IEEE Electron Device Letters, vol. 32, pp. 752-754, 2011.
[33] H. D. Trinh, E. Y. Chang, Y. Y. Wong, C. C. Yu, C. Y. Chang, Y. C. Lin, H. Q. Nguyen, and B. T. Tran, “Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs,” Japanese Journal of Applied Physics, vol. 49, p. 111201, 2010.
[34] J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L. E. Wernersson, “Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates,” Applied Physics Letters, vol. 100, p. 132905, 2012.
[35] W. J. Hsueh, G. B. He, C. Y. Chen, and J. I. Chyi, “Low Interface Trap Density HfO2/Al2O3/InAs MOS Capacitors Prepared by Nitrogen Plasma Treatment,” Compound Semiconductor Week, 2017.
[36] A. Nainani, T. Irisawa, Z. Yuan, Y. Sun, T. Krishnamohan, M. Reason, B. R. Bennett, J. B. Boos, M. G. Ancona, Y. Nishi, and K. C. Saraswat, “Development of high-k dielectric for antimonides and a sub 350 oC III-V pMOSFET outperforming Germanium,” in IEDM Tech. Dig., pp. 6.4.1-6.4.4, 2010.
[37] I. Geppert, M. Eizenberg, A. Ali, and S. Datta, “Band offsets determination and interfacial chemical properties of the Al2O3/GaSb system,” Applied Physics Letters, vol. 97, p. 162109, 2010.
[38] A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, “Optimization of the Al2O3 GaSb Interface and a High-Mobility GaSb pMOSFET,” IEEE Transactions on Electron Devices, vol. 58, pp. 3407-3415, 2011.
[39] A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, “Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of Al2O3,” Applied Physics Letters, vol. 97, p. 143502, 2010.
[40] M. Barth, G. Bruce Rayner, S. McDonnell, R. M. Wallace, B. R. Bennett, R. E. Herbert, and S. Datta, “High quality HfO2/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8?nm equivalent oxide thickness,” Applied Physics Letters, vol. 105, p. 222103, 2014.
[41] L. B. Ruppalt, E. R. Cleveland, J. G. Champlain, S. M. Prokes, J. B. Boos, D. Park, and B. R. Bennett, “Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure,” Applied Physics Letters, vol. 101, p. 231601, 2012.
[42] C. Merckling, X. Sun, A. Alian, G. Brammertz, V. V. Afanas’ev, T. Y. Hoffmann, M. Heyns, M. Caymax, and J. Dekoster, “GaSb molecular beam epitaxial growth on p-InP(001) and passivation with in situ deposited Al2O3 gate oxide,” Journal of Applied Physics, vol. 109, p. 073719, 2011.
[43] D. M. Zhernokletov, H. Dong, B. Brennan, J. Kim, R. M. Wallace, M. Yakimov, V. Tokranov, and S. Oktyabrsky, “Investigation of arsenic and antimony capping layers, and half cycle reactions during atomic layer deposition of Al2O3 on GaSb(100),” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, p. 060602, 2013.
[44] R. L. Chu, W. J. Hsueh, T. H. Chiang, W. C. Lee, H. Y. Lin, T. D. Lin, G. J. Brown, J. I. Chyi, T. S. Huang, T. W. Pi, J. Kwo, and M. Hong, “Surface Passivation of GaSb(100) Using Molecular Beam Epitaxy of Y2O3and Atomic Layer Deposition of Al2O3: A Comparative Study,” Applied Physics Express, vol. 6, p. 121201, 2013.
[45] R. L. Chu, T. H. Chiang, W. J. Hsueh, K. H. Chen, K. Y. Lin, G. J. Brown, J. I. Chyi, J. Kwo, and M. Hong, “Passivation of GaSb using molecular beam epitaxy Y2O3 to achieve low interfacial trap density and high-performance self-aligned inversion-channel p-metal-oxide -semiconductor field-effect-transistors,” Applied Physics Letters, vol. 105, p. 182106, 2014.
[46] Y. H. Lin, K. Y. Lin, W. J. Hsueh, L. B. Young, T. W. Chang, J. I. Chyi, T. W. Pi, J. Kwo, and M. Hong, “Interfacial characteristics of Y2O3 /GaSb(001) grown by molecular beam epitaxy and atomic layer deposition,” Journal of Crystal Growth, vol. 477, pp. 164-168, 2017.
[47] N. Miyata, A. Ohtake, M. Ichikawa, T. Mori, and T. Yasuda, “Electrical characteristics and thermal stability of HfO2 metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces,” Applied Physics Letters, vol. 104, p. 232104, 2014.
[48] M. Yokoyama, H. Yokoyama, M. Takenaka, and S. Takagi, “Impact of interfacial InAs layers on Al2O3/GaSb metal-oxide-semiconductor interface properties,” Applied Physics Letters, vol. 106, 2015.
[49] W. J. Hsueh, C. Y. Chen, C. M. Chang, J. I. Chyi, and M. L. Huang, “Effects of GaSb surface preparation on the characteristics of HfO2/Al2O3/GaSb metal-oxide-semiconductor capacitors prepared by atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 35, p. 01B106, 2017.
[50] W. J. Hsueh, K. H. Su, C. Y. Chen, and J. I. Chyi, “Improving the characteristics of HfO2/Al2O3/GaSb MOSCAPs using sequential hydrogen plasma and nitrogen plasma treatments,” Compound Semiconductor Week, 2017.
[51] A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy,” Progress in Solid State Chemistry, vol. 10, pp. 157-191, 1975.
[52] T. Suntola and J. Antson, “METHOD FOR PRODUCING COMPOUND THN FILMS,” vol. US4058430, 1977.
[53] Atom structure from internet “https://pubchem.ncbi.nlm.nih.gov/#,”.
[54] C. Detavernier, J. Dendooven, S. P. Sree, K. F. Ludwig, and J. A. Martens, “Tailoring nanoporous materials by atomic layer deposition,” Chem. Soc. Rev., vol. 40, pp. 5242-53, 2011.
[55] J. W. Hsu, “Interfacial and Electrical Properties of Atomic Layer Deposited HfO2/InAs MOS Capacitor,” Master′s Thesis, Electrical Engineering, National Central University, Taiwan, 2012.
[56] X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T. E. Seidel, J. T. Barton, D. Pang, and R. G. Gordon, “ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone,” Journal of The Electrochemical Society, vol. 152, p. G213, 2005.
[57] T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, “Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices,” Applied Physics Letters, vol. 82, pp. 2883-2885, 2003.
[58] G. Pardon, H. K. Gatty, G. Stemme, W. vander Wijngaart, and N. Roxhed, “Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores,” Nanotechnology, vol. 24, p. 015602, 2013.
[59] W. Barvosa-Carter, R. S. Ross, C. Ratsch, F. Grosse, J. H. G. Owen, and J. J. Zinck, “Atomic scale structure of InAs(001)-(2×4) steady-state surfaces determined by scanning tunneling microscopy and density functional theory,” Surface Science, vol. 499, pp. L129-L134, 2002.
[60] A. Nemcsics and J. Takacs, “Modeling of the hysteretic phenomena in RHEED intensity variation versus temperature for GaAs and InAs surfaces,” Semiconductors, vol. 45, pp. 91-95, 2011.
[61] C. Y. Chien, J. W. Hsu, P. C. Chiu, J. I. Chyi, and P. W. Li, “Gate Stack Engineering and Thermal Treatment on Electrical and Interfacial Properties of Ti/Pt/HfO2/InAs pMOS Capacitors,” Active and Passive Electronic Components, vol. 2012, pp. 1-6, 2012.
[62] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices, Third Edition,” 2007.
[63] J. Robertson and B. Falabretti, “Band offsets of high-κ gate oxides on III-V semiconductors,” Journal of Applied Physics, vol. 100, p. 014111, 2006.
[64] H. Y. Lin, S. L. Wu, C. C. Cheng, C. H. Ko, C. H. Wann, Y. R. Lin, S. J. Chang, and T.B. Wu, “Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors,” Applied Physics Letters, vol. 98, p. 123509, 2011.
[65] R. Winter, J. Ahn, P. C. McIntyre, and M. Eizenberg, “New method for determining flat-band voltage in high mobility semiconductors,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, p. 030604, 2013.
[66] A. Ali, H. Madan, S. Koveshnikov, and S. Datta, “Small Signal Response of Inversion Layers in High Mobility In0.53Ga0.47As MOSFETs Made with Thin high-κ Dielectrics,” ECS Transactions, pp. 271-284, 2009.
[67] C. A. Richter, A. R. Hefner, and E. M. Vogel, “A comparison of quantum-mechanical capacitance-voltage simulators,” IEEE Electron Device Letters, vol. 22, pp. 35-37, 2001.
[68] T. W. Pi, H. Y. Lin, Y. T. Liu, T. D. Lin, G. K. Wertheim, J. Kwo, and M. Hong, “Atom-to-atom interactions for atomic layer deposition of trimethylaluminum on Ga-rich GaAs(001)-4 x 6 and As-rich GaAs(001)-2 x 4 surfaces: a synchrotron radiation photoemission study,” Nanoscale Res Lett, vol. 8, p. 169, 2013.
[69] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition, ” Applied Physics Letters, vol. 92, p. 071901, 2008.
[70] Y. C. Byun, C. H. An, S. H. Lee, M. H. Cho, and H. Kim, “Thermal Stability of ALD-HfO2/GaAs Pretreated with Trimethylaluminium,” Journal of The Electrochemical Society, vol. 159, p. G6, 2012.
[71] P. C. Jiang and J. S. Chen, “Effects of Post-Metal Annealing on Electrical Characteristics and?Thermal Stability?of W2N/Ta2O5/Si MOS Capacitors,” Journal of The Electrochemical Society, vol. 151, p. G751, 2004.
[72] J. Hu and H. S. Philip Wong, “Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs,” Journal of Applied Physics, vol. 111, p. 044105, 2012.
[73] R. J. Carter, E. Cartier, A. Kerber, L. Pantisano, T. Schram, S. De Gendt, and M. Heyns, “Passivation and interface state density of SiO2/HfO2-based/polycrystalline-Si gate stacks,” Applied Physics Letters, vol. 83, pp. 533-535, 2003.
[74] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Applied Physics Letters, vol. 81, pp. 472-474, 2002.
[75] E. J. Kim, L. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, “Border traps in Al2O3/In0.53Ga0.47As (100) gate stacks and their passivation by hydrogen anneals,” Applied Physics Letters, vol. 96, p. 012906, 2010.
[76] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique,” Bell System Technical Journal, vol. 46, pp. 1055-1133, 1967.
[77] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electronics, vol. 5, pp. 285-299, 1962.
[78] D. V. Lang, “Deep?level transient spectroscopy: A new method to characterize traps in semiconductors,” Journal of Applied Physics, vol. 45, pp. 3023-3032, 1974.
[79] M. Kuhn, “A quasi-static technique for MOS C-V and surface state measurements,” Solid-State Electronics, vol. 13, pp. 873-885, 1970.
[80] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors,” IEEE Transactions on Electron Devices, vol. 31, pp. 42-53, 1984.
[81] J. A. Miller, C. Blat, and E. H. Nicollian, “Accurate measurement of trivalent silicon interface trap density using small signal steady?state methods,” Journal of Applied Physics, vol. 66, pp. 716-721, 1989.
[82] P. V. Gray and D. M. Brown, “DENSITY OF SiO2–Si INTERFACE STATES,” Applied Physics Letters, vol. 8, pp. 31-33, 1966.
[83] R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces,” Journal of Applied Physics, vol. 108, p. 124101, 2010.
[84] J. Albohn, W. Fussel, N. D. Sinh, K. Kliefoth, and W. Fuhs, “Capture cross sections of defect states at the Si/SiO2 interface,” Journal of Applied Physics, vol. 88, pp. 842-849, 2000.
[85] G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, “Characteristic trapping lifetime and capacitance-voltage measurements of GaAs metal-oxide-semiconductor structures,” Applied Physics Letters, vol. 91, p. 133510, 2007.
[86] N. Bouarissa and H. Aourag, “Effective masses of electrons and heavy holes in InAs, InSb, GaSb, GaAs and some of their ternary compounds,” Infrared Physics & Technology, vol. 40, pp. 343-349, 1999.
[87] A. R. Clawson, “Guide to references on III–V semiconductor chemical etching,” Materials Science and Engineering: R: Reports, vol. 31, pp. 1-438, 2001.
[88] Y. Xuan, H. C. Lin, and P. D. Ye, “Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited high-κ Dielectrics,” IEEE Transactions on Electron Devices, vol. 54, pp. 1811-1817, 2007.
[89] S. H. Kim, D. M. Geum, M. S. Park, and W. J. Choi, “In0.53Ga0.47As-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors Utilizing Y2O3 Buried Oxide,” IEEE Electron Device Letters, vol. 36, pp. 451-453, 2015.
[90] D. H. van Dorp, S. Arnauts, F. Holsteyns, and S. De Gendt, “Wet-Chemical Approaches for Atomic Layer Etching of Semiconductors: Surface Chemistry, Oxide Removal and Reoxidation of InAs (100),” ECS Journal of Solid State Science and Technology, vol. 4, pp. N5061-N5066, 2015.
[91] P. Motamedi and K. Cadien, “XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition,” Applied Surface Science, vol. 315, pp. 104-109, 2014.
[92] P. D. C. King, T. D. Veal, H. Lu, S. A. Hatfield, W. J. Schaff, and C. F. McConville, “The influence of conduction band plasmons on core-level photoemission spectra of InN,” Surface Science, vol. 602, pp. 871-875, 2008.
[93] S. Jewett, D. Zemlyanov, and A. Ivanisevic, “Characterization of peptide adsorption on InAs using X-ray photoelectron spectroscopy,” Langmuir, vol. 27, pp. 3774-82, 2011.
[94] F. C. Sun, M. T. Kesim, Y. Espinal, and S. P. Alpay, “Are ferroelectric multilayers capacitors in series?,” Journal of Materials Science, vol. 51, pp. 499-505, 2015.
[95] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering,” Journal of Applied Physics, vol. 90, pp. 4587-4608, 2001.
[96] S. Stemmer, V. Chobpattana, and S. Rajan, “Frequency dispersion in III-V metal-oxide-semiconductor capacitors,” Applied Physics Letters, vol. 100, p. 233510, 2012.
[97] R. V. Galatage, D. M. Zhernokletov, H. Dong, B. Brennan, C. L. Hinkle, R. M. Wallace, and E. M. Vogel, “Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states,” Journal of Applied Physics, vol. 116, p. 014504, 2014.
[98] Y. Urabe, N. Miyata, H. Ishii, T. Itatani, T. Maeda, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Yokoyama, N. Taoka, M. Takenaka, and S. Takagi, “Correlation between channel mobility improvements and negative Vth shifts in III-V MISFETs: Dipole fluctuation as new scattering mechanism,” in IEDM Tech. Dig., pp. 6.5.1-6.5.4, 2010.
[99] E. R. Cleveland, L. B. Ruppalt, B. R. Bennett, and S. M. Prokes, “Effect of an in situ hydrogen plasma pre-treatment on the reduction of GaSb native oxides prior to atomic layer deposition,” Applied Surface Science, vol. 277, pp. 167-175, 2013.
[100] S. McDonnell, B. Brennan, E. Bursa, R. M. Wallace, K. Winkler, and P. Baumann, “GaSb oxide thermal stability studied by dynamic-XPS,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 32, p. 041201, 2014.
[101] J. Robertson, Y. Guo, and L. Lin, “Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices,” Journal of Applied Physics, vol. 117, p. 112806, 2015.
[102] T. W. Pi, H. Y. Lin, T. H. Chiang, Y. T. Liu, Y. C. Chang, T. D. Lin, G. K. Wertheime, J. Kwo, and M. Hong, “Surface atoms core-level shifts in single crystal GaAs surfaces: Interactions with trimethylaluminum and water prepared by atomic layer deposition,” Applied Surface Science, vol. 284, pp. 601-610, 2013.
[103] J. Ahn, T. Kent, E. Chagarov, K. Tang, A. C. Kummel, and P. C. McIntyre, “Arsenic decapping and pre-atomic layer deposition trimethylaluminum passivation of Al2O3/InGaAs(100) interfaces,” Applied Physics Letters, vol. 103, p. 071602, 2013.
[104] Y. R. Luo, “Bond Dissociation Energies,” from internet “ http://staff.ustc.edu.cn/~luo971/2010-91-CRC-BDEs-Tables.pdf. ,”.
[105] Y. H. Chang, M. L. Huang, P. Chang, J. Y. Shen, B. R. Chen, C. L. Hsu, M. Hong, and J. Kwo, “In situ atomic layer deposition and synchrotron-radiation photoemission study of Al2O3 on pristine n-GaAs(001)-4×6 surface,” Microelectronic Engineering, vol. 88, pp. 1101-1104, 2011.
[106] V. Miikkulainen, M. Leskela?, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” Journal of Applied Physics, vol. 113, p. 021301, 2013.
[107] K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, M. Lanza, M. Lanza, and G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectronic Engineering, vol. 88, pp. 1272-1275, 2011.
[108] B. Rajamohanan, D. Mohata, Y. Zhu, M. Hudait, Z. Jiang, M. Hollander, Z. Jiang, M. Hollander, G. Klimeck, and S. Datta, “Design, fabrication, and analysis of p-channel arsenide/antimonide hetero-junction tunnel transistors,” Journal of Applied Physics, vol. 115, p. 044502, 2014.
[109] H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, “The advent of multilayer antimonene nanoribbons with room temperature orange light emission,” Chem Commun (Camb), vol. 52, pp. 8409-12, 2016.
[110] P. Skeath, C. Y. Su, I. Lindau, and W. E. Spicer, “Comparative study of Fermi energy pinning and adatom bond character: Antimony versus the column 3 elements (Al, Ga, In) on GaAs (110) and GaSb (110),” Journal of Applied Physics, vol. 57, pp. 5089-5092, 1985.
[111] R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, X. Miao, J. Sporre, J. Fronheiser, N. Loubet1, M. Sung, S. Sieg, S. Mochizuki1, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonte, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H.P. Amanapu, Z. Bi, J. Cha, H. C. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian1, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta1, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow1, S. Lee, A. Knorr, H. Bu, and M. Khare, “A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels,” in IEDM Tech. Dig., pp. 2.7.1-2.7.4, 2016.
[112] J. S. Yoon, K. Kim, T. Rim, and C. K. Baek, “Performance and Variations Induced by Single Interface Trap of Nanowire FETs at 7-nm Node,” IEEE Transactions on Electron Devices, vol. 64, pp. 339-345, 2017.
[113] W. Lu, J. K. Kim, J. F. Klem, S. D. Hawkins, and J. A. del Alamo, “An InGaSb p-channel FinFET,” in IEDM Tech. Dig., pp. 31.6.1-31.6.4, 2015.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明