博碩士論文 104326025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.118.154.250
姓名 李恂(Hsun Li)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
(Evaluation on yield of automobile shredder residue (ASR)-to-energy and heavy metals emission characterization by pyrolysis)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用固定床及流體化床系統熱裂解系統,評估廢車破碎殘餘物(Automobile Shredder Residue, ASR)轉換能源過程,產能效率及重金屬排放及分佈特性。此外,本研究為評估ASR分離純化之可能性,並嘗試以密度分離程序,探討液固比為5 L/kg、攪拌時間10分鐘以及靜置時間10分鐘之操作條件下,ASR主要物理組成(如硬質塑膠類、發泡塑膠類、紡織纖維類及皮革橡膠等)之分佈特性。
根據密度分離結果顯示,硬質塑膠主要密度範圍為1.00 g/cm3以下,約佔68.21%,主要種類包括聚乙烯及聚丙烯等塑膠;其次為密度範圍1.00~1.20 g/cm3,約佔21.82%,其中包括聚丙烯?-苯乙烯-丁二烯樹脂、聚甲基丙烯酸甲酯、聚苯乙烯或尼龍等塑膠種類;而密度範圍1.20~1.35 g/cm3以及大於1.35 g/cm3則分別約佔6.61%及3.36%,分別以聚乙烯對苯二甲酸酯、聚甲醛塑膠以及聚氯乙烯為主。發泡塑膠類及紡織纖維類,則主要分佈在密度小於1.00 g/cm3之範圍,組成比例均達97%以上。至於皮革橡膠類之密度範圍分析結果顯示,小於1.00 g/cm3之比例約占18.45wt.%,主要之組成比例,平均分散於密度範圍1.00-1.20 g/cm3、1.20-1.35 g/cm3及大於1.35 g/cm3,分別約佔27.45%、26.43%以及27.67%。根據前述之分離結果,ASR中之重金屬、砂石、玻璃及PVC類之重質塑膠,均可有效達成分離純化之目的。
應用固定床及流體化床熱裂解反應系統,探討ASR與各物理組成轉換能源之結果顯示,應用固定床熱裂解反應系統,ASR各物理組成之產物,主要以生質油及生質碳為主,各約占22.49~55.97 %及29.44~57.14 %,其中生質油之熱值約介於8,200~11,200 kcal/kg。至於應用流體化床系統處理ASR,因其熱傳反應較佳,因此,ASR熱裂解之氣體產物較多,約佔20.06 %,而生質碳及生質油之產量降低,分別為36.66 %及34.27 %,其中生質油之熱值則介於9,300~10,300 kcal/kg。
根據重金屬之分佈特性分析結果可知,ASR中重金屬鎘,主要分佈於裂解油,分佈比例大於99%以上,其中流體化床熱裂解系統,由於其熱反應快速且爐內氣體擾流之故,少數比例之重金屬鎘分佈於氣相產物,僅約佔0.06%。重金屬鉻、銅、鉛及鋅,則主要分佈於生質碳,比例約達90%以上,至於裂解油及氣體產物分佈比例,則均低於5%,此係具有較高揮發溫度之重金屬,在熱裂解反應溫度500℃之條件下,揮發比例較少,致主要分佈於生質碳。ASR中氯及硫之分佈特性結果顯示,生質碳為氯及硫分佈之主要地點,其分佈比例分別約為79.58%及63.53%,而裂解油之比例約為17.68%及19.06%,至於氣體產物中之氯及硫分佈比例,則分別為2.75%及17.41%。另根據氣體產物之重金屬物種模擬分析,結果顯示於較低溫度範圍約300~500℃,均以固相產物之氯化重金屬及硫化重金屬形式存在,當溫度於500~800℃,則以氣相產物之氯化重金屬及硫化重金屬形式存在。整體而言,本研究初步之分析結果,已建立完成ASR基本特性、熱裂解技術評估能源轉換效率及重金屬排放特性,應可提供未來ASR轉換能源技術選擇及重金屬排放控制策略之重要參考依據。

關鍵字:熱裂解、廢車破碎殘餘物、分離純化、重金屬、分佈特性
摘要(英) This research aims to evaluate the energy conversion efficiency and heavy metal partitioning and emission characterization in pyrolysis of Automobile Shredder Residue (ASR) using fixed bed and fluidized bed gasifier. Meanwhile, the feasibility of separation and purification of ASR by density separation controlling at liquid to solid ratio (L/S) of 5 L/kg, stirring time of 10 minutes and standing time of 10 minutes was also discussed. The major components of ASR could be included plastic-rigid, plastic-foam, textile, leather and rubber.
According to the analysis results of density separation, the major density range of plastic-rigid was less than 1.00 g/cm3 with corresponding the weight percentage was approximately 68.21%. The light fractions of plastic-rigid were mainly composed of polyethylene and polypropylene. Approximately 21.82% of plastic-rigid was ranged between 1.00 g/cm3 and 1.20 g/cm3. The major components were including acrylonitrile butadiene styrene, polymethyl methacrylate, polystyrene or nylon. Approximately 6.61% and 3.36% of plastic-rigid were ranged between 1.20 g/cm3 and 1.35 g/cm3 or higher than 1.35 g/cm3, respectively. The polyethylene terephthalate, polyoxymethylene, and polyvinyl chloride were identified by separation and purification process. In the case of plastic-foam and textile separation, the major density range was less than 1.00 g/cm3 with corresponding the weight percentage was approximately 97% and above. However, the leather and rubber was only 18.45 wt% which the density was less than 1.00 g/cm3. The weight percentages of leather and rubber were relatively average in tested density ranges that of 27.45% (1.00-1.20 g/cm3), 26.43% (1.20-1.35 g/cm3), and 27.67% (higher than 1.35 g/cm3), respectively. Based on the density separation results, the heavy metals, gravels, glasses, and PVC plastic in ASR could achieve the objectives of separation and purification by the tested density separation process.
The experimental results indicated that the bio-char and bio-oil produced from ASR and their derived components in fixed bed gasifier were approximately 22.49~55.97% and 29.44~57.14%, respectively. Especially for bio-oil, its higher heating value (HHV) was ranged between 8,200 kcal/kg and 11,200 kcal/kg. Due to the good heat transfer characteristics of fluidized bed gaifier, the yield of pyrolysis gas was increased to 20.6% with corresponding the yield of bio-char and bio-oil decreased to 36.66 % and 34.27 %, respectively. However, the HHV of bio-oil was slightly increased from 9,300 kcal/kg to 10,300 kcal/kg.
The heavy metals partitioning characteristics results showed that cadmium in ASR was mainly partitioned in bio-oil using the fixed bed gasifier which it was approximately 99%. However, in the case of fluidized bed gasifier, the Cd partitioning characteristics of syngas was increased to 0.06% resulting in rapidly thermal reaction and gas turbulent in the fluidized bed gasifier. The heavy metals, such as chromium, copper, lead and zinc, were approximately 90% and above partitioned in bio-char. It implied that the above metals partitioning percentage was less 5% partitioned in bio-oil and gas, respectively. This is because the volatilization temperature of the above heavy metals was relatively high, the less amounts of the above metals will partition in the bio-char during ASR pyrolysis process operated at temperature 500℃. The analysis results of chlorine and sulfur partitioning characteristics in ASR pyrolysis showed that the speciation containing chlorine and sulfur were mainly distributed in bio-char which their partitioning percentages were 79.58% and 63.53%, respectively. Meanwhile, the Cl and S partitioning percentages of bio-oil were 17.68% and 19.06%, respectively. The heavy metals speciation of gaseous products was simulated by chemical equilibrium model. The simulation results indicated that heavy metals chloride and sulfide speciation was presented in solid phase during the lower pyrolysis temperature range of 300-500℃. However, the pyrolysis temperature increased to 800℃, heavy metals chloride and sulfide speciation was mainly partitioned in gaseous phase. In summary, the basic properties of ASR and its energy conversion by pyrolysis were conducted. Meanwhile, the tested heavy metals emission and partitioning characteristics were also well established during ASR pyrolysis process. Therefore, the results of this research could provide the good information for selection of pyrolysis technologies and control strategies of metals emission in the future.

Keywords: Pyrolysis, automobile shredder residue (ASR), separation and purification, heavy metal, partitioning characterization
關鍵字(中) ★ 熱裂解
★ 廢車破碎殘餘物
★ 分離純化
★ 重金屬
★ 分佈特性
關鍵字(英) ★ pyrolysis
★ Automobile Shredder Residue (ASR)
★ separation and purification
★ heavy metals emission characterization
論文目次 摘要 i
Abstract iii
誌謝 vii
目錄 ix
圖目錄 xiii
表目錄 xvii
第一章 前言 1
第二章 文獻回顧 5
2-1 廢機動車輛處理現況 5
2-1-1 廢機動車輛回收與處理流程 5
2-1-2 廢機動車輛回收與處理現況 8
2-2 廢車破碎殘餘物回收再利用 19
2-2-1 廢車破碎殘餘物之基本特性資料 19
2-2-2 廢車破碎殘餘物分離純化系統 23
2-2-3 廢車破碎殘餘物處理處置方式 25
2-3 熱處理轉化技術及產物分析 29
2-3-1 熱裂解技術應用 29
2-3-2 熱裂解產物 30
2-3-3 熱裂解生質油品影響評估 34
2-3-4 污染物分佈特性 34
第三章 研究材料與方法 39
3-1 研究材料 39
3-2 試驗方法 42
3-2-1 原料之動力學分析 42
3-2-2 試驗設備及操作條件 44
3-2-3 試驗操作步驟 50
3-3 分析項目與方法 53
3-3-1 浮選試驗 53
3-3-2 水洗試驗 54
3-3-3 廢車破碎殘餘物 55
3-3-4 熱裂解產物 59
3-3-5 質量平衡及污染物分佈 72
3-3-6 污染物分佈 73
第四章 結果與討論 75
4-1 ASR之基本特性分析 75
4-2 廢車破碎殘餘物之熱動力分析 87
4-2-1 熱重損失之分析結果 87
4-2-2 反應活性及活化能之分析結果 91
4-2-3 熱反應過程氣相物種之官能基分析 104
4-3 ASR中各物理組成之分離純化試驗分析結果 114
4-3-1 ASR之密度分佈特性 114
4-3-2 ASR浮選試驗之質量平衡 120
4-3-3 ASR水洗試驗之洗滌效率及除氯效率 126
4-4 熱裂解產物之分析結果 131
4-4-1 熱裂解試驗之重覆分析結果 131
4-4-2 熱裂解產物之質量平衡 132
4-4-3 熱裂解產物產量分析 144
4-5 熱裂解產物之特性分析 154
4-5-1 裂解油之特性分析結果 154
4-5-2 生質碳之特性分析結果 163
4-5-3 氣體產物之特性分析結果 166
4-6 熱裂解產能效率評估 175
4-6-1 碳分佈 175
4-6-2 能源密度 178
4-7 熱裂解過程之污染物流佈結果 184
4-7-1 熱裂解產物之重金屬分佈特性 184
4-7-2 熱裂解產物之氯分佈特性 214
4-7-3 熱裂解產物之硫分佈特性 217
第五章 結論與建議 223
5-1 結論 223
5-1-1 廢車破碎殘餘物之基本特性分析結果 223
5-1-2 廢車破碎殘餘物密度分離之結果 224
5-1-3 廢車破碎殘餘物熱裂解產能評估之結果 225
5-1-4 熱裂解過程之污染物流佈結果 226
5-2 建議 227
參考文獻 229
附錄 243
附錄一 ASR細質部分之粒徑分佈結果 244
附錄二 ASR粒徑分佈及累積分佈圖 (a)台中 (b)彰化 244
附錄三 ASR各粒徑分佈之物理組成 (a)台中 (b)彰化 245
附錄四 熱裂解ASR各物理組成之產物彙整-收集油品 246
附錄五 熱裂解ASR各物理組成之產物彙整-收集重金屬 247
附錄六 熱裂解ASR各物理組成之產物彙整-收集硫及氯 248
附錄七 固定床熱裂解ASR中硬質塑膠類之氣體體積變化 249
附錄八 固定床熱裂解ASR中發泡塑膠類之氣體體積變化 249
附錄九 固定床熱裂解ASR中紡織纖維類之氣體體積變化 250
附錄十 固定床熱裂解ASR中皮革橡膠類之氣體體積變化 250
附錄十一 固定床熱裂解ASR之氣體體積變化 251
附錄十二 流體化床熱裂解ASR之氣體體積變化 251
附錄十三 校正前氣體重量彙整表 252
附錄十四 校正因子與校正後氣體重量彙整表 253
附錄十五 熱裂解之氣體重金屬排放物種類別推估條件 254
參考文獻 Antoniou, N., Stavropoulos, G., Zabaniotou, A., 2014. Activation of end of life tyrespyrolytic char for enhancing viability of pyrolysis - critical review, analysis and recommendations for a hybrid dual system. Renewable and Sustainable Energy Reviews, 39, 1053-1073.
Anzano, M., Collina, E., Piccinelli, E., Lasagni, P., 2017. Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products. Waste Management, 64, 263-271.
Balcik-Canbolat, C., Ozbey, B., Dizge, N., Keskinler, B., 2016. Pyrolysis of commingled waste textile fibers in a batch reactor: Analysis of the pyrolysis gasses and solid product. International Journal of Green Energy, 14, 289-294.
Berzi, L., Delogu, M., Giorgetti, A., Pierini, M., 2013. On-field investigation and process modelling of end-of-Life vehicles treatment in the context of Italian craft-type authorized treatment facilities. Waste Management, 33(4), 892-906.
Blume, T., Walther, M., 2013. The End-of-life Vehicle Ordinance in the German automotive industry corporate sense making illustrated. Journal of Cleaner Production, 56, 29-38.
Bu, Q., Lei, H., Ren, S., Wang, L., Zhang, Q., Tang, J., Ruan, R., 2012. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresource Technology, 108, 274-279.
Burat, F., Guney, A., Olgac, Kangal, M., 2009. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Management, 29(6), 1807-1813.
Canadian environmental Law Association. 2011. Improving the management of end-of-life vehicles in Canada, 1-33.
Chiodo, V., Zafarana, G., Maisano, S., Freni, S., Urbani, F., 2016. Pyrolysis of different biomass: Direct comparison among Posidonia Oceanica, Lacustrine Alga and White Pine. Fuel, 164, 220-227.
Coats, W. A., Redfern, J. P., 1964. Kinetic Parameters from Thermogravimetric Data. Nature, 201, 68-69.
Cossu, R., Lai, T., 2013. Washing treatment of automotive shredder residue (ASR). Waste Management, 33, 1770-1775.
Cossu, R., Fiore, S., Lai, T., Luciano, A., Mancini, G., Ruffino, B., Viotti, P., Zanetti, M.C., 2014. Review of Italian experience on automotive shredder residue characterization and management. Waste Management, 34(10), 1752-1762.
Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: An overview. Waste Management, 45, 143-151.
Day, M., Cooney, J.D., Shen, Z., 1996. Pyrolysis of automobile shredder residues: an analysis of the products of a commercial screw kiln process. Journal of Analytical and Applied Pyrolysis, 37(1), 49-67.
de Marco, I., Caballero, B.M., Cabrero, M.A., Laresgoiti, M.F., Torres, A., Chomon, M.J., 2007. Recycling of automobile shredder residues by means of pyrolysis. Journal of Analytical and Applied Pyrolysis, 79(1-2), 403-408.
de Marco, I., Caballero, B.M., Lo’ pez, A., Laresgoiti, M.F., Torres, A., Chomo’n, M.J., 2009. Pyrolysis of the rejects of a waste packaging separation and classification plant. Journal of Analytical and Applied Pyrolysis, 85(1-2), 384-391.
Donaj, P., Yang, W., B?asiak, W., Forsgren, C., 2010. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification. Journal of Hazardous Materials, 182(1-3), 80-89
Edo, M., Aracil, I., Fonta, R., Anzanob, M., Fullanaa, A., Collinab, E.,2013. Viability study of automobile shredder residue as fuel. Journal of Hazardous Materials, 260, 819- 824.
Eduardo, G.D., Jose-Manuel, A.L., 2017. Characterization by thermogravimetric analysis of the wood used in Canary architectural heritage. Journal of Cultural Heritage, 23, 111-118.
Farzana, R., Rajarao, R., Sahajwalla, V., 2014. Synthesis of ferrosilicon alloy using waste glass and plastic. Materials Letters, 116, 101-103.
Ferella, F., de Michelis, I., Scocchera, A., Pelino, M., Veglio, F., 2015. Extraction of metals from automotive shredder residue: preliminary results of different leaching systems. Chinese Journal of Chemical Engineering, 23(2), 417-424.
Fiore, S., Ruffino, B., Zanetti, M.C., 2012. Automobile shredder residues in Italy: characterization and valorization opportunities. Waste Management, 32(8), 1548- 1559.
Galvagno, S., Fortuna, F., Cornacchia, G., Casu, S., Coppola, T., Sharma, V.K., 2001. Pyrolysis process for treatment of automobile shredder residues: preliminary experimental results. Energy Conversion and Management, 42(5), 573-586.
Gao, N., Li, A., Li, W., 2009. Research into fine powder and large particle tyre pyrolysis. Waste Management & Research, 27, 242-250.
Garrido, M.A., Font, R., Conesa, J.A., 2016. Kinetic study and thermal decomposition behavior of viscoelastic memory foam. Energy Conversion and Management, 119(1), 327-337
Gent, M.M., Menendez, R., Torano, J., Isidro, D., Torno, S., 2009. Cylinder cyclone (LARCODEMS) density media separation of plastic wastes. Waste Management, 29(6), 1819-1827.
Gent, M.R., Menendez, R., Muniz, H., Torno, S., 2015. Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation. Waste Management, 43, 421-433.
Gonzalez-Fernandez, O., Hidalgo, M., Margui, E., Carvalho, M.L., Queralt, I., 2008. Heavy metals’ content of automotive shredder residues (ASR): Evaluation of environmental risk. Environmental Pollution, 153, 476-482.
Gradin, K.T., Luttropp, C., Bjorklund, A., 2013. Investigating improved vehicle dismantling and fragmentation technology. Journal of Cleaner Production, 54, 23-29.
Granata, A., Moscardini, E., Furlani, G., Pagnanelli, F., Toro, L., 2011. Automobile shredded residue valorisation by hydrometallurgical metal recovery. Journal of Hazardous Materials, 185, 44-48.
Gray, F.M., Smith, M.J., Silva, M.B., 2011. Identification and characterization of textile fibers by thermal analysis. Journal of Chemical Education, 88, 476-479.
Guo, Q., Zhang, X., Li, C., Liu, X., Li, J., 2012. TG-MS study of the thermo-oxidative behavior of plastic automobile shredder residues. Journal of Hazardous Materials, 209- 210, 443- 448.
Harder, M.K., Forton, O.T., 2007. A critical review of developments in the pyrolysis of automotive shredder residue. Journal of Analytical and Applied Pyrolysis, 79(1-2), 387-394.
Haydary, J., Susa, D., Gelinger, V., Cacho, F., 2016. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor. Journal of Environmental Chemical Engineering, 4(1), 965-972.
Joung, H.T., Seo, Y.C., Kim, K.H., Hong, J.H., Yoo, T.W., 2007. Distribution and characteristics of pyrolysis products from automobile shredder residue using an experimental semi-batch reactor. Korean Journal of Chemical Engineering, 24, 996-1002.
Khodier, A., Williams, K., Dallison, N., 2017. Challenges around automotive shredder residue production and disposal. Waste Management, 73, 566-573.
Kim, K.H., Joung, H.T., Nam, H., Seo, Y.C., Hong, J.H., Yoo, T.W., Lim, B.S., Park J.H., 2004. Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Management, 24(6), 533-540.
Kumar, S., Yamaoka, T., 2007. System dynamics study of the Japanese automotive industry closed loop supply chain. Journal of Manufacturing Technology Management, 18, 115-138.
Kurose, K., Okuda T., Nishijima, W., Okada, M., 2006. Heavy metals removal from automobile shredder residues (ASR). Journal of Hazardous Materials, 137(3), 1618-1623.
Lewis, G., Gaydardzhiev, S., Bastin, D., Bareel, P.F., 2011. Bio hydrometallurgical recovery of metals from fine shredder residues. Minerals Engineering, 24(11), 1166-1171.
Li, H., Jiang, X., Cui, H., Wang, F., Zhang, X., Yang, L., 2015. Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. Journal of Analytical and Applied Pyrolysis, 115, 37-42.
Lopez, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., 2011. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173(1), 62-71.
Malkow, T., 2004. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Management, 24(1), 53-79.
Mallampati, S.R., Heo, H.J., Park, M.H., 2016. Hybrid selective surface hydrophilization and froth flotationseparation of hazardous chlorinated plastics from E-waste with novelnanoscale metallic calcium composite. Journal of Hazardous Materials, 306, 13-23.
Mayyas, A., Qattawi, A., Omar, M., Shan, D., 2012. Design for sustainability in automotive industry: a comprehensive review. Renew. Renewable and Sustainable Energy Reviews, 16(4), 1845-1862.
Miandad, R., Barakat, M.A., Rehan, M., Aburiazaiza, A.S., Ismail, I.M.I., Nizami, A.S., 2017. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66-78.
Mirabile, D., Pistelli, M.I., Marchesini, M., Falciani, P., Chiappelli, L., 2002. Thermal valorisation of automobile shredder residue:injection in blast furnace. Waste Management, 22(8), 841-851.
Monteavaro, L.L., Riegel, I.C., Petzhold, C.L., Samios, D., 2005. Thermal Stability of Soy-based Polyurethanes. Polimeros: Ciencia e Tecnologia, 15, 151-155.
Morselli, L., Santini, A., Passarini, F., Vassura, I., 2010. Automotive shredder residue (ASR) characterization for a valuable management. Waste Management, 30(11), 2228-2234.
Ni, F., Chen, M., 2014. Research on ASR in China and its energy recycling with pyrolysis method. Journal of Mater Cycles Waste Manag, 17, 107-117.
Notarnicola, M., Cornacchia C., Gisi, S.D., Canio, F.D., Freda, C., Garzone, P., Martino, M., Valerio, V., Villone, A., 2017. Pyrolysis of automotive shredder residue in a bench scale rotary kiln. Waste Management, 65, 92-103.
Nourreddine, M., 2007. Recycling of auto shredder residue. Journal of Hazardous Materials, 139, 481-490.
Passarini, F., Ciacci, L., Santini, A., Vassura I., Morselli L., 2012. Auto shredder residue LCA: implications of ASR composition evolution. Journal of Cleaner Production, 23(1), 28-36.
Pe’ra, J., Ambroise, J., Chabannet, M.,2004. Valorization of automotive shredder residue in building materials. Cement and Concrete Research, 34(4), 557-562.
Pita, F. and Castilho, A., 2016. Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Management, 60, 91-99
Pongstabodee, S., Kunachitpimol, N., Damronglerd, S., 2008. Combination of three-stage sink-float method and selective flotation technique for separation of mixed post-consumer plastic waste. Waste Management, 28(3), 475-483.
Reddy, M.S., Kurose, K., Okuda, T., Nishijima, W., Okada, M., 2007. Separation of polyvinyl chloride (PVC) from automotive shredder residue (ASR) by froth flotation with ozonation. Journal of Hazardous Materials, 147, 1051-1055.
Richard, G.M., Mario, M., Javier, T., Susana, T., 2011. Optimization of the recovery of plastics for recycling by density media separation cyclones. Resources, Conservation and Recycling, 55(4), 472-482.
Roy, C., Chaala, A., 2001. Vacuum pyrolysis of automobile shredder residues. Resources, Conservation and Recycling, 32(1), 1-27.
Ruffino, B., Fiore, S., Zanetti, M.C., 2014. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment. Waste Management, 34(1), 148-155.
Sakai, S.I., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., Rotter, V.S., Passarini, F., Santini, A., Peeler, M., Li J., Oh, G.J., Chi, N.K., Bastian, L., Moore, S., Kajiwara, N., Takigami, H., Itai, T., Takahashi, S., Tanabe, S., Tomoda, K., Hirakawa, T., Hirai, Y., Asari, M., Yano, J., 2014. An international comparative study of end-of-life vehicle (ELV) recycling systems. Mater Cycles Waste Manag, 16, 1-20.
Santini, A., Herrmann, C., Passarini, F., Vassura, I., Luger, T., Morselli, L., 2010. Assessment of Ecodesign potential in reaching new recycling targets for ELVs. Resources, Conservation and Recycling, 54(12), 1128-1134.
Santini, A., Morselli, L., Passarini, F., Vassura, I., Di Carlo, S., Bonino, F., 2011. End-of- Life Vehicles management: Italian material and energy recovery efficiency. Waste Management, 31(3), 489-494.
Santini, A., Passarini, F., Vassura, I., Serrano, D., Dufour, J., Morselli, L., 2012. Auto shredder residue recycling: Mechanical separation and pyrolysis. Waste Management, 32(5), 852-858.
Sawyer-Beaulieu, Susan, 2009. Gate-To-Gate Life Cycle Inventory Assessment of North American end-of-life vehicle management processes-studying vehicle end-of-life (VEOL) using life cycle assessment (LCA), information sheet, University of Windsor, 1-2.
Schmid, A., Naquin, P., Gourdon, R., 2013. Incidence of the level of deconstruction on material reuse, recycling and recovery from end-of life vehicles: an industrialscale experimental study. Resources, Conservation and Recycling, 72, 118-126.
Shen, H., Forssberg, E., Pugh, R.J.,2001. Selective flotation separation of plastics by particle control. Resources, Conservation and Recycling, 33(1), 37-50.
Shen, H., Pugh, R.J., Forssberg, E., 2002. Floatability, selectivity and flotation separation of plastics by using a surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196(1), 63-70.
Shent, H., Pugh, R.J., Forssberg, E., 1999. A review of plastics waste recycling and the flotation of plastics. Resources, Conservation and Recycling, 25(2), 85-109.
Shibayama, A., Otomo, T., Takasaki, Y., Cao, Y., Murakami, T., Watanabe, K., Inoue H., 2006. Separation and recovery of valuable metals from Automobile Shredder Residue (ASR) fly ash by wet processing. Int. J. Soc. Mater. Eng. Resour. 54-59.
Simic, V., Dimitrijevic, B., 2013. Modelling of automobile shredder residue recycling in the Japanese legislative context. Expert Systems with Applications, 40(18), 7159-7167.
Singh, J., Lee, B.K., 2015. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment. Waste Management, 38, 271-283.
Soo, V.K., Jef, Peeters, Compston, P., Doolan, M., Duflou, J.R., 2017. Comparative Study of End-of-Life Vehicle Recycling in Australia and Belgium. Procedia CIRP, 61, 269-274.
Staudinger, J., Keoleian, G.A., 2001. Management of End-of life vehicles (ELVs) in the US. Report of Center for Sustainable System, University of Michigan. No. CSS01-01.
Takoungsakdakun, T., Pongstabodee, S., 2007. Separation of mixed post-consumer PET-POM-PVC plastic waste using selective flotation. Separation and Purification Technology, 54(2), 248-252.
Tian, J., Chen, M., 2014. Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles. Waste Management, 34(2), 458-467.
Trouve, G., Kauffmann, A., Delfosse, L., 1998. Comparative thermodynamic and experimental study of some heavy metal behaviours during automotive shredder residues incineration. Waste Management, 18(5), 301-307.
Van, Caneghem J., Block, C., Vermeulen, I., Van Brecht, A., Van, Royen P., Jaspers, M., Wauters, G., Vandecasteele, C., 2010. Mass balance for POPs in a real scale fluidized bed combustor co-incinerating automotive shredder residue. Journal of Hazardous Materials, 181(1-3), 827-835.
Van Krevelen, D.W., 2009. Thermal Decomposition. Properties of Polymers, 763-777.
Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., Vandecasteele, C., 2011. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorization. Journal of Hazardous Materials, 190, 8-27.
Vidovic, M., Dimitrijevic, B., Ratkovic, B., Simic, V., 2011. A novel covering approach to positioning ELV collection points. Resources, Conservation and Recycling, 57, 1-9.
Wallman, P.H., Thorsness, C.B., Winter, J.D., 1998. Hydrogen production from wastes. Energy, 23(4), 271-278.
Wang, L., Chen, M., 2013. Policies and perspective on end-of-life vehicles in China. Journal of Cleaner Production, 44, 168-176.
Wang, X., Chen, M., 2011. Implementing extended producer responsibility: vehicle remanufacturing in China. Journal of Cleaner Production, 19(6-7), 680-686.
Xie, Q., Addy, M., Liu, S., Zhang, B., Cheng, Y., Wan, Y., Li, Y., Liu, Y., Lin, X., Chen, P., Ruan, R., 2015. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel, 160, 577-582.
Xue, Y., Zhou, S., Brown, R.C., Kelkar, A., Bai, X., 2015. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40-46.
Yin, R., Liu, R., Mei, Y., Fei, W., Sun, X., 2013. Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel, 112, 96-104.
Yang, Z., Kumar, A., Huhnke, R.L., 2015. Review of recent developments to improve storage and transportation stability of bio-oil. Renewable and Sustainable Energy Reviews, 50, 859-870.
Yuan, H., Xing, S., Huhetaoli, Lu T., Chen, Y., 2015. Influences of copper on the pyrolysis process of demineralized wood dust through thermogravimetric and Py-GC/MS analysis. Journal of Analytical and Applied Pyrolysis, 112, 325-332.
Zhao, Q., Chen, M., 2011. A comparison of ELV recycling system in China and Japan and China’s strategies. Resources, Conservation and Recycling, 57, 15-21.
Zolezzi, M., Nicolella, C., Ferrara, S., Iacobucci, C., Rovatti, M., 2004. Conventional and fast pyrolysis of automobile shredder residues (ASR). Waste Management, 24(7), 691-699.
Zorpas, A.A., Inglezakis, V.J., 2012. Automotive industry challenges in meeting EU 2015 environmental standard. Technology in Society, 34(1), 55-83.
江東諺,評估以浮選法純化堆肥熱裂解碳之研究,明志科技大學,碩士論文,臺北,2010。
行政院環保署,網址: http://statis91.epa.gov.tw/epa/stmain.jsp?sys=100,2017年。
李孔概,台灣廢機動車輛粉碎分類處理廠之整體經營績效評估-資料包絡分析法應用,國立臺北大學,碩士論文,臺北,2013。
呂白瑛,廢機動車輛回收業之市場進入策略探討-以鑫佳昇汽車有限公司為例,萬能科技大學,碩士論文,桃園,2009。
吳韻柔,ASR 熱裂解動力學之研究,國立高雄第一科技大學,碩士論文,高雄,2006。
周明憲,都市下水污泥熱裂解行為之研究,國立中央大學,碩士論文,桃園,2005。
姚瑞龍,橡膠熱裂解設計參數分析之探討,國立中正大學,碩士論文,嘉義,2000。
姚彥丞,江康鈺,呂承翰,塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究,中華民國環境工程學會2017廢棄物處理技術研討會,臺北,2017。
徐伊亭,廢機動車輛後端處理體系之社會淨效益評估,國立臺北大學,碩士論文,臺北,2010。
許琬舒,高分材料熱裂解模式模擬之研究,國立高雄第一科技大學,碩士論文,高雄,2008。
賀偉雄,廢機動車輛粉碎殘餘物製作固態衍生燃料之實證研究,國立高雄第一科技大學,碩士論文,高雄,2013。
傅國誌,不同車輛廢輪胎熱裂解排放多環芳香烴之研究,國立高雄應用科技大學,碩士論文,高雄,2008。
蔡俊傑,蔗渣、稻桿及其混合物熱裂解之研究,國立高雄第一科技大學,碩士論文,高雄,2014。
劉猷志,黃繼賢,林盛隆,國內ELV回收之環境衝擊評估,2009年永續產品與產業管理研討會,台南,2009。
戴華山,蔡俊傑,陳俊宇,蔡芮欖,稻稈、蔗渣及其混合物之熱裂解動力學性質研究,第二十五屆廢棄物處理技術研討會,高雄,2013。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明