參考文獻 |
Alini S., Basile F., Blasioli S., Rinaldi C., Vaccari A., “Development of new catalysts for N2O-decomposition from adipic acid plant”, Applied Catalysis B: Environmental, Vol. 70, 323–329 (2007).
Beer J.M., Martin G.B., “Application of advanced technology for NO control: alternate fuels and fluidized bed coal combustion”, AIChE Symposium Series, Vol. 74, 93-114 (1978).
Bosch H., Janssen F., “Formation and control of nitrogen oxides”, Catalysis Today, Vol. 2, 369-379 (1988).
Castoldia L., Matarresea R., Morandib S., Righinia L., Lietti L., “New insights on the adsorption, thermal decomposition and reduction of NOx over Pt- and Ba-based catalysts”, Applied Catalysis B: Environmental, Vol. 224, 249-263 (2018).
Charles A. P., Ronald P. D., “Comparative study of coal based catalysts for NO adsorption and NO reduction by CO”, Ind. Eng. Chem. Process Des. Develop., 12. (1973)
Chen L. Q., Niua X. Y., Lia Z. B., Donga Y.L., Wanga D., Yuana F. L., Zhua Y. J., “The effects of BaO on the catalytic activity of La1.6Ba0.4NiO4 in direct decomposition of NO”, Journal of Molecular Catalysis A: Chemical, Vol. 423, 277-284 (2016).
Cheng J., Wang X. P., Yu J., Hao Z. P., Xu Z. P., “Sulfur-resistant NO decomposition catalysts derived from Co-Ca/Ti-Al hydrotalcite-like compounds”, The Journal of Physical Chemistry C, Vol. 115, 6651-6660 (2011).
Cheng X. X., Cheng Y. R., Wang Z.Q., Ma C. Y., “Comparative study of coal based catalysts for NO adsorption and NO reduction by CO”, Fuel, Vol. 214, 230-241 (2018).
Chen L.F., Gonzalez G., Wang J.A., Norena L.E., Toledo A., Castillo S., Moran-Pineda M., “Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen”, Applied Surface Science, Vol. 243, 319-328 (2005).
Coq B., Mauvezin M., Delahay G., Kieger S., “Kinetics and mechanism of the N2O reduction by NH3 on a Fe-Zeolite-Beta catalyst”, Journal of Catalysis, Vol. 195, 298-303 (2000).
Dai X., Jiang W., Wang W., Weng X., Shang Y., Xue Y., Wu Z., “Supercritical water syntheses of transition metal?doped CeO2 nano?catalysts for selective catalytic reduction of NO by CO: An in situ diffuse reflectance Fourier transform infrared spectroscopy study”, Chinese Journal of Catalysis, Vol. 39, 728-735 (2018).
Fenimore C.P., Moore J., “Quenched carbon monoxide in fuel-lean flame gas”, Combustion and Flame, Vol. 22, 343-351 (1974).
Goto K., Ishiharaa T., “Direct decomposition of NO into N2 and O2 over Ba3Y3.4Sc0.6O9”, Applied Catalysis A: General, Vol. 409, 66-73 (2011).
Hao J., Liu Z., Fu L., Zhu T., “Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen”, Applied Catalysis B: Environmental, Vol. 44, 355-370 (2003).
He Y. Y., Ford M. E., Zhu M. H., Liu Q. C., Tumuluri U., Wu Z. L., Wachs I. E., “Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts”, Applied Catalysis B: Environmental, Vol.193, 141-150 (2016).
Huang Z., Peng X., Lin H., Shangguan W., “A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot”, Catalysis Communications, Vol. 8, 157-161 (2007).
Hu R., Ding R., Chen J., Hu J., Zhang Y., “Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion,” Catalysis Communications, Vol. 21, 38-41 (2012).
IEA Greenhouse Gas R&D Programme, “Abatement of other greenhouse gases-nitrous oxide”, (2000).
Imanaka N., Masui T., “Advances in direct NOx decomposition catalysts”, Applied Catalysis A: General, Vol. 431, 1-8 (2012).
Inomata H., Shimokawabe M., Kuwana A., Arai M., “Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: Influence of preparation variables on the catalytic performance”, Applied Catalysis B: Environmental, Vol. 84, 783-789 (2008).
Iwamoto M., “Heterogeneous catalysis for removal of NO in excess oxygen. Progress in 1994”, Catalysis Today, Vol. 29, 29-35 (1996).
Jacob D.J., “Introduction to Atmosphere Chemistry”, Princeton, NJ: Princeton University Press. (1999).
Zhong J., Gao Z. Y., Ding Y., “Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model”, Journal of China Coal Society, Vol. 42, 3028-3034. (2017)
Kang Z., Yuan Q., Zhao L., Dai Y., Sun B., Wang T., “Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator”, Applied Thermal Engineering, Vol. 123, 635-645 (2017).
Kumar S., Teraoka Y., Joshi A.G., Rayalu S., Labhsetwar N., “Ag promoted La0.8Ba0.2MnO3 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O”, Journal of Molecular Catalysis A: Chemical, Vol. 348, 42-54 (2011).
Kumar S., Vinu A., Subrt J., Bakardjieva S., Rayalu S., Teraoka Y., Labhsetwar N., “Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control”, Catalysis Today, Vol. 198, 125-132 (2012).
Li J., Hu R., Zhang J., Meng W., Du Y., Si Y., Zhang Z., “Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion”, Fuel, Vol. 178, 148-154 (2016).
Li X. L., Li Y. H., “Molybdenum modified CeAlOx catalyst for the selective catalytic reduction of NO with NH3”, Journal of Molecular Catalysis A: Chemical, Vol. 386, 69-77 (2014).
Li Z., Ma Z., Gao X., Yuan X., Zhang L., Zhu Y., “Simultaneous catalytic removal of NOx and diesel soot particulates over La2?xAxNi1?yByO4 perovskite-type oxides”, Catalysis Communications, Vol. 12, 817-821 (2011).
Liu F., He H., Zhang C., Shan W., Shi Xi., “Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst”, Catalysis Today, Vol. 175, 18-25 (2011).
Liu K., Yu Q., Liu J., Wang K., Han Z., Xuan Y., Qin Q., “Selection of catalytically active elements for removing NO and CO from flue gas at low temperatures”, New Journal of Chemistry, Vol. 41, 13993-13999 (2017).
Liu Z., Fenga X., Zhoua Z., Fenga Y., Li J., “Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3”, Applied Surface Science, Vol. 428, 526-533 (2018)
Liu Z., Zhou Z., He F., Chen B., Zhao Y., XumQ., “Catalytic decomposition of N2O over NiO-CeO2 mixed oxide catalyst”, Catalysis Today, Vol. 294, 56-60 (2017).
Mainhardt H., “N2O emissions from adipic acid and nitric acid production,” Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
Nakatsuji T., Yamaguchi T., Sato N., Ohno H., “A selective NOx reduction on Rh-based catalysts in lean conditions using CO as a main reductant”, Applied Catalysis B: Environmental, Vol. 88, 61-70 (2008).
Ohnishi C., Iwamoto S., Inoue M., “Direct decomposition of nitrous oxide in the presence of oxygen over iridium catalyst supported on alumina”, Chemical Engineering Science, Vol. 63, 5076-5082 (2008).
Pan K.L., Chen M.C., Yu S.J., Yan S.Y., Chang M.B., “Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst”, Journal of the Air & Waste Management Association, Vol. 66, 619-630 (2016).
Pels J.R., Verhaak M.J.F.M., “Selective catalytic reduction of nitrous oxide with hydrocarbons using a SO2 resistant Fe/zeolite catalyst”, Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, 359-364 (2000).
Phil H.H., Reddy M.P., Kumar P.A., Ju L.K. and Hyo J.S. “SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures”, Applied Catalysis B: Environmental, Vol.78, 301-308. (2008)
Pietraszek A., Da Costa P., Marques R., Kornelak P., Hansen T.W., Camra J., Najbar M., “The effect of the Rh–Al, Pt–Al and Pt–Rh–Al surface alloys on NO conversion to N2 on alumina supported Rh, Pt and Pt–Rh catalysts”, Catal Today, Vol. 119, 187-193 (2007).
Reddy P.S.S., Pasha N., Rao M.G.V.C., Lingaiah N., Suryanarayana I., Prasad P.S.S., “Direct decomposition of nitrous oxide over Ru/Al2O3 catalysts prepared by deposition–precipitation method”, Catalysis Communications, Vol. 8, 1406-1414 (2007).
Rodhe H., “A comparison of the contribution of various gases to the greenhouse effect”, Science, Vol. 248, 1217–1219 (1990).
Shaw J.T., “Emissions of nitrogen oxides in fluidized-bed combustion and applications”, Applied Science Publishers, London and New York, Chap. 6, 227-260 (1983).
Shi C., Zhang Z. C., Crocker M., Xu L., Wang C. Y., Au C. Y., Zhu A. M. “Nonthermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst”, Catalysis Today, Vol. 211, 96-103. (2013).
Steward E.G., Rooksby H.P., “Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type”, Acta Crystallographica, Vol. 4, 503-507 (1951).
Sui Z. J., Vradman L., Reizner I., Landau M. V., Herskowitz M., “Effect of preparation method and particle size on LaMnO3 performance in butane oxidation”, Catalysis Communications, Vol.12, 1437-1441 (2011).
Sui C., Niu X. Y., Wang Z., Yuan F. L., Zhu Y. J., “Activity and deactivation of Ru supported on La1.6Sr0.4NiO4 perovskite-like catalysts prepared by different methods for decomposition of N2O”, Catalysis Science & Technology, Vol.6, 8505-8515 (2016).
Sultana A., Haneda M., Hamada H., “A new concept of combined NH3-CO-SCR system for efficient NO reduction in excess oxygen”, Applied Catalysis B: Environmental, Vol. 88, 180-184 (2009).
Sutthiumporn K., Maneerung T., Kathiraser Y., Kawi S., “CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression”, International Journal of Hydrogen Energy, Vol. 37, 11195-11207 (2012).
Tauster S.J., and Murrell L.L., “The NO-CO reaction in the presence of excess O2 as catalyzed by Iridium”, Journal of Catalysis, Vol. 41, 192-195 (1976).
van den Brink R.W., Booneveld S., Pels J.R., Bakker D.F., Verhaak M.J.F.M., “Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite”, Applied Catalysis B: Environmenta, Vol. 32, 73-81 (2001).
Waibel. R.T. “Ultralow NOx burners for industrial process heaters”, John Zink company, 19-22. (1993).
Wang Z., Lin F., Jiang S., Qiu K., Kuang M., Whiddon R., Cen K., “Ceria substrate–oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2”, Fuel, Vol. 166, 352-360 (2016).
Wojtowicz M.A., Pels J.R., Moulijn J.A., “Combustion of coal as a source of N2O emission”, Fuel Processing Technology, Vol. 34, 1-71 (1993).
Yan W. X., Li S. G., Fan C. G., Deng S., “Effect of surface carbon-oxygen complexes during NO reduction by coal char”, Fuel, Vol. 204, 40-46 (2017).
Yasuharu Y., Hiroshi U., “Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: Correlation between cluster model calculations and temperature-programmed desorption experiments”, Catalysis Today, Vol. 42, 167-174 (1998).
Yokota K., Fukui M., Tanaka T., “Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen”, Applied Surface Science, Vol. 121-122, 273-277 (1997).
Yu J., Guo F., Wang Y., Zhu J., Liu Y., Su F. and Xu G., “Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3”, Applied Catalysis B: Environmental, Vol. 95, 160-168 (2010).
Zeldovich Y.B. “The oxidation of nitrogen in combustion and explosions”, Acta Physicochimica USSR, Vol. 21, 577-268 (1947).
Zhao Z., Yang X.G., Wu Y., “Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO”, Applied Catalysis B: Environmental, Vol. 8, 281-297 (1996).
Zhu H., Kim J.R., Ihm S.K., “Selective catalytic reduction of NO with CO on Pt/W–Ce–Zr catalysts”, Reaction Kinetics and Catalysis Letters, Vol. 97, 207-215 (2009).
Zhu J. J., Xiao D. H., Li J., Yang X. G., Wu Y., “Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1?xCexSrNiO4 (0 ? x ? 0.3)”, Journal of Molecular Catalysis A: Chemical, Vol. 234, 99-105. (2005)
Zhu J. J., Xiao D. H., Li J., Yang X. G., Wu Y., “Recycle—new possible mechanism of NO decomposition over perovskite(-like) oxides”, Journal of Molecular Catalysis A: Chemical, Vol. 223, 29-34. (2005)
Zhu Y., Sun Y., Niu X., Yuan F., Fu H., “Preparation of La-Mn-O perovskite catalyst by microwave irradiation method and its application to methane combustion,” Catalysis Letters, Vol. 135, 152-158 (2010). |