以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:152 、訪客IP:18.226.172.230
姓名 潘葉桐(pham duong uyen vy) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱
(ANALYTICAL STUDY ON BRIDGES WITH POLYNOMIAL FRICTION PENDULUM ISOLATORs)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 摘要
傳統的隔震系統使用了固定頻率的隔震器,如摩擦單擺支承(FPS),即
是長週期的隔震系統。然而,此類隔震器具固定的週期與回復力之特性,在具
長週期成分之震波下造成低頻似共振現象,進而降低隔震的效果。為了改善此
現象,本文使用新的隔震器,即具變曲率面之多項式摩擦單擺支承(Polynomial
Friction Pendulum Isolation, PFPI),克服了原本的限制,並保留以往隔震器的優
點。PFPI 的滑動位移隨著振動頻率下降而減少,而因回復力存在一上限值,
使傳遞之結構的力不會超出限制。PFPI 由摩擦子與球窩支承和六次多項式函
數所定義軸對稱之曲面所構成。
目前常用之滑動隔震分析模型大多由適用於支承回復勁度為常數下為
假設,而不考慮滑動曲面效應所引起的水平雙向耦合運動效應。此簡化模型若
在極限地震力或近斷層地震力作用下將失去其精確度。此外,多數現有的分析
模型並未考量軸壓對隔震器的影響。
因此,為了解決類似問題,本文將分析考慮軸壓影響的支承,並研究
水平雙向及水平垂直之耦合運動對隔震器隔震效果的影響。
關鍵字: 變動曲率, 滑動隔震, 三向地表運動, 耦合效應摘要(英) ABSTRACT
A conventional isolation system with constant isolation frequency such as FPS is
usually a long-period dynamic system. However, this system has limitation due to constant
isolator period and restoring force characteristics. This lead its seismic response is likely to
be amplified in the earthquake with long-period wave components.
A new isolator called the polynomial friction pendulum isolator (PFPI) that
overcomes these limitations while retaining all the advantages has been described in this
thesis. The PFPI has oscillation frequency decreasing with sliding displacement, and the
restoring force has an upper bound so that the force transmitted to the structure is limited. A
PFPI consists of a slider and a concave and axially symmetrical sliding surface which is
defined by a six-order polynomial function.
Nowadays, the analytical models proposed for a SIVC isolator were usually
derived by using static equilibrium condition. This kind of models (also called simplified
model) is not able to account for dynamic coupling effects between each vibration direction
as well as the curvature effect such as centrifugal force. As a result, these models will lose
their accuracy when the isolators are subjected to extreme earthquakes that produce large
velocity or displacement. In addition, most of the existing models did not consider the effect
the vertical ground motion on the isolation performance.
In order to solve that problem, this thesis establish another analytical for the
bearing and consider the effect of vertical ground motions. In addition, it also investigates
the dynamic coupling effects on the isolator performance.
Keywords: Variable curvature, sliding isolation, tri-axial ground motion, coupling effect.關鍵字(中) ★ 變動曲率
★ 滑動隔震
★ 三向地表運動
★ 耦合效應關鍵字(英) 論文目次 TABLE OF CONTENTS
Equation Chapter 1 Section 1 ABSTRACT .............................................................. i
ABSTRACT……………………………………………………….…………………………...i
TABLE OF CONTENTS .......................................................................................... iii
LIST OF TABLES ..................................................................................................... vi
LIST OF FIGURES .................................................................................................. vii
CHAPTER 1 INTRODUCTION ............................................................................... 1
1.1. Overview ......................................................................................................... 1
1.2. Literature Review ............................................................................................ 2
1.2.1. Studying the correlation of variable curvature sliding isolation system ............ 2
1.2.2. Influence of vertical earthquake force on isolation system ............................... 4
1.2.3. The literature of the mathematical model of sliding isolation analysis .............. 6
1.3. Research purpose and content .......................................................................... 8
ANALYTICAL THEORY OF PFPI UNDER TRIAXIAL GROUND
MOTION ......................................................................................................... 10
NUMERICAL ANALYSIS METHODS .......................................... 15
3.1. Theory .......................................................................................................... 15
3.1.1. State space equation of motion ...................................................................... 15
3.2. Discretization of the equation of motion: ....................................................... 16
BEHAVIOR OF POLYNOMIAL FRICTION PENDULUM
ISOLATOR UNDER TRIAXIAL GROUND MOTION ........................................... 17
4.1. Polynomial Friction Pendulum Isolator (PFPI) properties .............................. 17
4.1.1. Defining the sliding surface by a six-order polynomial .................................. 17
4.1.2. Isolator stiffness and isolator frequency of the PFPI ...................................... 20
4.1.3. The properties of the PFPI ............................................................................. 21
4.2. The properties of target bridge ....................................................................... 22
4.3. The database inputs ....................................................................................... 25
4.4. Numerical Analysis Results and Discussion .................................................. 26
4.5. Results .......................................................................................................... 34
4.5.1. The response of bridge under JMA-Kobe earthquake with PFPI and without
PFPI .............................................................................................................. 34
4.5.2. The response of bridge under JMA-Kobe earthquake with vertical effect and no
vertical effect ................................................................................................ 37
4.5.3. The response of bridge under JMA-Kobe earthquake with coupling effect and
no coupling effect .......................................................................................... 41
4.5.4. The response of bridge under El Centro earthquake with PFPI and without
PFPI .............................................................................................................. 45
4.5.5. The response of bridge under El Centro earthquake with vertical effect and no
vertical effect ................................................................................................ 48
4.5.6. The response of bridge under El Centro earthquake with coupling effect and no
coupling effect............................................................................................... 52
4.5.7. The response of bridge under Imperial Valley earthquake with PFPI and
without PFPI ................................................................................................. 56
4.5.8. The response of bridge under Imperial Valley earthquake with vertical effect
and no vertical effect ..................................................................................... 59
4.5.9. The response of bridge under Imperial Valley earthquake with coupling effect
and no coupling effect ................................................................................... 63
4.5.10. The response of bridge under JR-Takatori earthquake with PFPI and without
PFPI .............................................................................................................. 67
4.5.11. The response of bridge under JR-Takatori earthquake with vertical effect and
no vertical effect ............................................................................................ 70
4.5.12. The response of bridge under JR-Takatori earthquake with coupling effect and
no coupling effect .......................................................................................... 74
4.5.13. The response of bridge under TCU068 earthquake with PFPI and without
PFPI ............................................................................................................. 78
4.5.14. The response of bridge under TCU068 earthquake with vertical effect and no
vertical effect ................................................................................................ 81
4.5.15. The response of bridge under TCU068 earthquake with coupling effect and no
coupling effect............................................................................................... 85
4.5.16. Comparison ................................................................................................... 89
CONCLUSION AND RECOMMENDATION ................................. 95
APPENDIX I ......................................................................................................... 98
APPENDIX II ....................................................................................................... 111
REFERENCES ....................................................................................................... 115參考文獻 REFERENCES
[1] Calio, I., Massimo, M. and Francesco, V. (2003)” Seismic response of multistorey
buildings base-isolated by friction devices with restoring properties.”
Computers and Structures ,81(28-29): 2589-2599.
[2] Faramarz, K. and Montazar, R. (2010) “Seismic response of double concave
friction pendulum base-isolated structures considering vertical component of
earthquake.” Advances in Structural Engineering, 13:1-13.
[3] Fenz, D. M. and Constantinou, M. C. (2006) “Behaviour of the double concave
Friction Pendulum bearing.” Earthquake Engineering and Structural Dynamics
Vol.35 1403-1424.
[4] Furukawa, S. (2011) "Performance of structures and equipment in base-isolated
medical facilities subjected to severe earthquake motions." Kyoto University.
[5] Hwang, J.S. and Hsu, T.Y. (2000), “Experimental study Ofisolated building
Undertriaxial Groundexcitations.” Journal of Structural Engineering, Vol.126,
No.8, 879-886.
[6] Jangid, R.S. (1996), “seismic response of sliding structures to bidirectional
earthquake excitation”, Earthquake Engineering and Structural Dynamics, vol.
25, 1301-1306.
[7] Jangid, R.S (2004), “Optimum friction pendulum system for near-fault
motions.” Engineering Structures, Vol.27, No.3,349-359.
[8] Khoshnudian, F., and Montazar, R. (2010) “Seismic Response of Double
Concave Friction Pendulum Base-Isolated Structures Considering Vertical
Component of Earthquake”, Advances in Structural Engineering Vol. 13 No.
1226.
[9] Khoshnudian, F. and Motamedi, D. (2013) “Seismic Response of Asymmetric
Steel Isolated Structures Considering Vertical Component of Earthquakes.”
Journal of Civil Engineering Vol.17, No.6,1333-1347.
116
[10] Krishnamoorthy, A. (2013) “Variable curvature pendulum isolator and viscous
fluid damper for seismic isolation of structures.” Journal of Vibration and
Control Vol.17 No.12 1779-1790.
[11] Loghman, V., Khoshnoudian, F. and Banazadeh, M., (2013) “Effect of vertical
component of earthquake on seismic responses of triple concave friction
pendulum base-isolated structures.” Journal of Vibration and Control Vol.21
No.11 2099-2113.
[12] Lu, L.Y., Shih, M.H., C.S., Chang, C. and Chang, W.N. (2002) “Seismic
performance of sliding isolated structures in near-fault areas”, Proceedings of
the 7 th US National Conference on Earthquake Engineering, Session AT-2,
July 21-25, Boston, MA, USA.
[13] Lu, L.Y., Shih, M.H., Tzeng, S.W. and Chang, C.S. (2003), “Experiment of a
sliding isolated structure subjected to near-fault ground motion”, Proceedings
of the 7th Pacific Conference on Earthquake 65 Engineering, February 13-15,
Christchurch, New Zealand.
[14] Lu, L.Y., Shih, M.H. and Wu, C.Y. (2004a), “Near-Fault Seismic Isolation
Using Sliding Bearings with Variable Curvatures, Proceedings of the 13th
World Conference on Earthquake Engineering”, August 1-6, Vancouver, BC,
Canada, Paper no. 3264.
[15] Lu, L.Y., Shih, M.H., Tzeng, S.W. and Wang, J. (2004b) “Performance
evaluation of sliding isolated structures subjected to near-fault ground motion”,
Proceedings of International Conference in Commemoration of the 5th
Anniversary of the 1999 Chi-Chi Earthquake, September 8-9, Taipei, Taiwan.
[16] Lu, L. Y., T. Y. Lee, S. Y. Juang, S. W. Yeh (2013) “Polynomial friction
pendulum isolators (PFPIs) for building floor isolation: an experimental and
theoretical study” Engineering Structures, Vol. 56, 970-982.
117
[17] Lu, L. Y., C. C. Lin, G. L. Lin (2013b) “Experimental evaluation of
supplemental viscous damping for a sliding isolation system under pulse-like
base excitation”. Journal of Sound and Vibration, Vol. 332, No. 8, 1982-1999.
[18] Lu, L. Y., C. C. Hsu (2013b), “Experimental study of variable-frequency
rocking bearings for seismic isolation” Engineering Structures, Vol. 46, No. 1,
116-129.
[19] Lu, L. Y., T. Y. Lee, S. W. Yeh (2011) “Theory and experimental study for
sliding isolators with variable curvature” Earthquake Engineering and
Structural Dynamics, Vol. 40, No. 14, 1609-1627.
[20] Lu, L. Y., T. Y. Lee, S. Y. Juang, S. W. Yeh (2013) “Polynomial friction
pendulum isolators (PFPIs) for building floor isolation: an experimental and
theoretical study.” Engineering Structures, Vol. 56, 970-982.
[21] Liang-Wei Wang, Lu, L. Y (2018) “Generic 3D formulation for sliding
isolators with variable curvature and its experimental verification”.
Engineering Structures 177 (2018) 12-29.
[22] Naeim, F. and J.M. Kelly (1999) “Design of Seismic Isolated Structures,
Chapter 4.” John Wiley & Sons, Inc., New York.
[23] Ou, Y.C., Song J. and Lee G.C. (2010) “A parametric study of seismic
behavior of roller seismic isolation bearings for highway bridge.” Earthquake
Engineering And Structural Dynamics Vol.39,541-559.
[24] Panchal V. R. and Jangid R. S. (2009) “Seismic Response of Structures with
Variable Friction Pendulum System.” Journal of Earthquake Engineering
Vol.13, No.2,193-216.
[25] Panchal V. R., Jangid R. S., Soni D. P. and Mistry B. B. (2010), “Response of
the Double Variable Frequency Pendulum Isolator under Triaxial Ground
Excitations.” Journal of Earthquake Engineering, 14:4, 527-558.
118
[26] Papazoglou A. J. and Elnashai A. S. (1996) “Analytical and field evidence of
the damaging effect of vertical earthquake ground motion.” Earthquake
Engineering and Structural Dynamics, 25:1109-1137.
[27] Pranesh, M. and R. Sinha (2000), “VFPI: an isolation device for a seismic
deign.” Earthquake Engineering and Structural Dynamics, 29, 603-627.
[28] Pranesh, M. and R. Sinha (2002),” Earthquake Resistant Design of Structures
using the Variable Frequency Pendulum Isolator.”Journal of Structural
Engineering, 128, 870.
[29] Pranesh, M. and R. Sinha (2004) “Behavior of Torsionally Coupled Structures
with Variable Frequency Pendulum Isolator”. Journal of Structural
Engineering, 130.
[30] Pranesh,M. and R. Sinha (2004) ”Aseismic design of structure-equipment
systems using variable frequency pendulum isolator”, Nuclear Engineering and
Design, v 231, n 2, June, 2004, p 129-139.
[31] Politopoulos I. and Moussallam N. (2012) “Horizontal floor response spectra
of base-isolated buildings due to vertical excitation.” Earthquake Engineering
and Structural Dynamics, 41:587-592.
[32] Rabiei.M and Khoshnoudian.F, (2011) “Response of multistory friction
pendulum baseisolated buildings including the vertical component of
earthquakes.” Can. J. Civ. Eng.38: 1045–1059.
[33] Sharma A,Jangid RS,(2010),“SeismicResponse of Base-IsolatedBenchmark
Building with Variable Sliding Isolators.” Journal of Earthquake Engineering,
14:1063–1091.
[34] Shakib.H, and Fuladgar,A (2003a), “Effect of vertical component of
earthquake on the response of pure-friction base-isolated asymmetric
buildings”, Engineering Structures 25,1841–1850.
119
[35] Shakib, H., and Fuladgar, A. (2003b), “Response of pure-friction sliding
structures to three components of earthquake excitation.” Computers and
Structures NO.81,189–19.
[36] Tsopelas P C,Roussis P C,Constantinou M C,Buchanan and Reinhorn A M
(2005) “3D-BASIS-ME-MB: Computer Program for Nonlinear Dynamic
Analysis of Seismically Isolated Structures.”Technical Report MCEER-05-
0009.
[37] Warn G. P. and Whittaker A. S. (2008) “Vertical earthquake loads on seismic
isolation systems in bridges”, Journal of Structural Engineering, 134:1696-
1704.
[38] Yang, Y. B., L.Y.Lu, J. D. Yau (2005) “Chapter 22: Structure and Equipment
Isolation.”Vibration and Shock Handbook,edited by C. W. de Silva, CRC
Press, Taylor & Francis Group.
[39] Zayas VA, Low SS, Mahin SA (1990), “A simple pendulum technique for
achieving seismic isolation.”Earthquake Spectra; 6:317–333.指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2018-10-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare