參考文獻 |
[1]You-Lun Lin. (2017). A Three-Dimensional Equivalent Uniaxial Strain and Stress Constitutive Model. Master Thesis. National Central university department of civil engineer.
[2]Ling-Yuan Chang. (2009). Nonlinear Analysis of Reinforced Concrete Structures by the VFIFE Method. Master Thesis. National Central university department of civil engineer.
[3]Yu-Ju Lai (2014). 3D Concrete Material Model with Concept of Equivalent Uniaxial Strain. Master Thesis. National Central university department of civil engineer.
[4]Shang-Ta Lee (2016) 3-D Equivalent Uniaxial Strain of Concrete Material Constitutive Model. Master Thesis. National Central university department of civil engineer.
[5]Darwin, David.David A. Pecknold, ASCE. (1976).” Analysis of RC Shear Panels Under Cyclic Loading. Journal of the Structural Division”, 1976, Vol. 102, Issue 2, Pg. 355-369.
[6]Menetrey, P.K. J. Willam. (1995). “Triaxial Failure Criterion for Concrete and Its Generalization”. ACI Structural Journal, Title no. 92-S30.
[7]Balan, Toader A. Filip C. Filippou. Egor P. Popov. (1997). “Constitutive Model for 3D Cyclic Analysis of Concrete Structures”. Journal of Engineering Mechanics, Volume 123 Issue 2.
[8]William, K.J. Warnke, E.P. (1974).”Constitutive model for the triaxial behavior of concrete”. International Association for Bridges and Structural Engineering, Bergamo, Italy.
[9]Saenz, I.P. “Discussion of equation for the stress-strain curve of concrete, by P. Desay and S. Krishan” . (1964). ACI Journal,61(9):1229-35.
[10]Tedesco, J.W., Ross, C.A., (1998). “Strain-rate-dependent constitutive equations for concrete”. Journal of Pressure Vessel Technology – Transactions of the ASME
[11]Elwi, Alaa A.David W. Murray. (1979). “A 3D Hypoelastic Concrete Constitutive Relationship”. Journal of the Engineering Mechanics Division, Vol. 105, Issue 4, Pg. 623-641
[12]Ottosen, N.S., “Constitutive Model for Short-Time Loading of Concrete,” Journal of the Engineering Mechanics Division, 1979;105(1):127-141
[13]S. S. Hsieh, E. C.Ting and W. F. Chen. (1982). “A plasticity-fracture model for concrete”. School of Civil Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.
[14]Ross, C.A., Thompson, P.Y., Tedesco, J.W., (1989). “Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression”. ACI Materials Journal 86-M43, 475–481.
[15]Klisinski,M. (1985). “Degradation and Plastic Deformation of Concrete”. IFTR Report 38, Ph.D.thesis, Polish Academy of Sciences.
[16]Kolymbas, D. ”An outline of hypo-plasticity” Arch Appl Mech 1991:6;143-51
[17]Cowell WL. (1966). “Dynamic properties of plain Portland cement concrete”, Technical Report No. R447, US Naval Civil Engineering Laboratory, Port Hueneme, CA.
[18]Hughes, M.L., Tedesco, J.W., Ross, C.A. (1993). “Numerical Analysis of High Strain Rate SplittingTensile Tests,” Computers and Structures, Vol. 47, No. 4/5, 1993, pp. 653-671.
[19]Lekhnitskii,SG. In: Brandstatter JJ, editor. Theory of elasticity of an anisotropic elastic body. San Francisco, CA: Holden-Day.
[20]Kupfer, H.B., and Gerstle, K.H., (1973), “Behavior of Concrete under Biaxial Stresses,” Journal of the Engineering Mechanics Division, Vol.99, pp. 853-866.
[21]Linse, D. H. Aschl. (1976). Versuche zum Verhalten von Beton unter mehrachsiger Beanspruchung. In München durchgeführtes Teilprojekt eines internationalen Vergleichsprogrammes. Versuchsbericht, Lehrstuhl für Massivbau, Technische Universität München.
[22]Bischoff, P.H., Perry, S.H., (1991). Compression behaviour of concrete at high strain rates. Materials and Structures 24, 425–450.
[23]蔡清裕 (2003)。爆炸及撞擊加載下混凝土動態响應的數值模擬。長沙國防科技大學。
[24]I.C. Yeh (1998). Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, 28:1797–1808.
[25]裘子铭 (2017)。基于Logistic 的混凝土养护时间对其抗压强度影响程度预测。大连海洋大学海洋与土木工程学院。
[26]左曉寶 (2009)。 硫酸盐侵蚀下的混凝土损伤破坏全过。 硅酸盐学报, 37(7): 1063–1067。
[27]杜建民 (2011)。 地下结构混凝土硫酸盐腐蚀机理及性能退化。中国铁道出版社。
[28]E.M.SCHULSON (1999). Journal of the Minerals, Metals, Materials
Society 51
[29]Ivor Hawkes, Malcolm Mellor (1972). “DEFORMATION AND FRACTURE OF ICE UNDER UNIAXIAL STRESS” (U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 03 755, U.S.A.)
[30]Stephen J. Jones(2007) “A review of the strength of iceberg and other freshwater ice and the effect of temperature” National Research Council of Canada, Institute for Ocean Technology, P.O. Box 12093, Stn. A, St. John′s, NL, Canada A1B 3T5
[31]Balan, ToaderA. Enrico Spacone.Minho Kwon. (2001). A 3D hypoplastic model for cyclic analysis of concrete structures. Engineering Structures, 23 333–342.
[32]Li T, Crouch R. (2010). “A C2 plasticity model for structural concrete”. Computers &Structure; 88: 1322–32.
[33]Xiaobin Lu. (2005). “Uniaxial and tri-axial behavior of high strength concrete with and without steel fibers” New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering.
[34]Chen, W. F. (1988). “Plasticity for structural Engineers”.
[35]Bazant, Z.P., and Kim S.S. (1979). “Plastic-Fracturing Theory for Concrete,” Journal of the Engineering Mechanics Division. 105(3):407-428.
[36]Bazant, Z. P. and Shieh, C.L. (1978). “Endochronic Model for Nonlinear Triaxial Behavior of Concrete,” Nuclear Engineering and Design, Vol. 47, pp. 305-315.
[37]Coon, M.D., D.C. Echert, and G. S. Knoke. (1992). “Pack ice anisotropic constitutive model”, paper presented at IAHR Ice Symposium 1992, Int. Assoc. for Hydraul. Res., Banff, Alberta, Canada.
[38]Coon, M.D., G. S. Knoke, D.C. Echert, and R. S. Pritchard. (1998). “The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law”. J. Geophys. Res., 103, 21,915-21,925.
[39]Hibler, W. D., III (1979). “A dynamic thermodynamic sea ice model” J. Phys. Oceanogr., 9, 815-846.
[40]Hibler, W. D., III, and C. F. Ip. (1995). “The effect of sea ice theology on Aractic buoy drift, in Ice Mechanics” edited by vol. 207, J. Dempsey and Y. D. S. Rajapakse, pp. 255-263, Am. Soc. of Mech. Eng., New York.
[41]Hibler, W. D., III, and E. M. Schulson. (1997). “On modeling sea ice fracture and flow in numerical investigations of climate” Ann. Glaciol., 25, 26-32.
[42]Azuma, N. (1994). “A flow law for anisotropic ice and its application to ice sheets”, Earth Planet. Sci. ten., 128, 601-614.
[43]Azuma, N. (1995). “A flow law for anisotropic polycrystalline ice under uniaxial compressive deformation” Cold Reg. Sci. and Technol., 23, 137-147
[44]Heil, P., Hibler III, W.D. (2002). “Modelling the high-frequency component of Arctic sea-ice drift and deformation”. Journal of Physical Oceanography 32 (11), 3039–3057. |