博碩士論文 105322015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:151 、訪客IP:18.222.182.26
姓名 陳森杰(Sen-Chieh Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 直接基礎搖擺反應於等高及不等高橋墩案例之橋梁與希爾伯特-黃之應用
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要

世界上已發生多起因地震而導致許多橋梁損壞的案例,為有效減少地震所造成的災害,相關研究提出各種隔震方法,其中之一為直接基礎搖擺隔震,直接基礎搖擺可藉由延長結構週期降低傳遞至上部結構之地震力,雖會造成上部結構較大的位移,卻可使橋柱於地震中受到較輕微的損傷。
本研究使用日本道路橋梁示方書之算例,探討不同震波作用下等高橋墩案例與不等高橋墩案例於考慮與不考慮直接搖擺反應,在柱頂反應及柱底受力情形之比較,直接基礎搖擺反應使用非線性土壤彈簧模擬基礎與土壤互制之關係,等高橋墩案例模型與不等高橋墩案例模型會以結構整體勁度比較。
本研究亦使用適合處理非線性及非穩態訊號的希爾伯特-黃轉換(簡稱HHT)計算得到瞬時頻率,進一步得出能量-頻率-時間之分布情形,除了比較各模型於固定基礎與搖擺反應在HHT時頻譜中頻率分布及變化之情形,亦試圖找出搖擺反應效果顯著時,頻率下降之現象與柱頂反應及柱底受力的關係。

關鍵字 : 直接基礎、搖擺反應、不等高橋墩案例、週期延長
摘要(英) Abstract
There have been so many examples of bridge damage due to the earthquake throughout the world. One of the seismic isolation methods that have been proposed to effectively decrease the damage by the earthquake is rocking effect of the spread foundation. Although the rocking effect can cause larger displacement at the superstructure, it is capable of decreasing the seismic force from the ground to the superstructure by prolonging the period to keep the bottom of the structure from the major damage.
This research shows that the comparison of the reaction at the superstructure and the substructure between the fixed behavior and the rocking effect. It also compares the results from a symmetrical model and two unsymmetrical models which are referred to Japan specification. Models with rocking effect use nonlinear soil springs to simulate the interaction between the foundation and the soil. In addition, the comparison between a symmetrical model and two unsymmetrical models depends on what entire stiffness the whole model is.
This research also uses Hilbert-Huang Transform, which is capable of dealing with the nonlinear and non-steady state signals appropriately to get the instantaneous frequency that shows the energy-frequency-time relationship. Besides comparing the distribution and the change of the frequency between the fixed models and rocking effect models by using HHT, the relationship between the frequency descending proportion and either the reaction at the superstructure or the substructure would be shown when the rocking effect is applied on each of the model.
Keywords : Spread foundation , Rocking effect , Irregular-height bridge case ,
Period prolongation
關鍵字(中) ★ 直接基礎
★ 搖擺反應
★ 不等高橋墩案例
★ 週期延長
關鍵字(英) ★ Spread foudation
★ Rocking Effect
★ Irregular-height bridge case
★ Period Prolongation
論文目次 目 錄
摘 要 Ⅰ
Abstract Ⅱ
誌 謝 Ⅲ
目 錄 Ⅳ
表 目 錄 VI
圖 目 錄 Ⅷ
第一章 緒論 1
1.1研究動機與研究目的 1
1.2文獻回顧 3
1.2.1土壤彈簧與直接基礎搖擺機制 3
1.2.2希爾伯特黃轉換 (Hilbert-Huang Transform) 7
1.3論文架構 9
第二章 結構分析 10
2.1目標橋梁之數值模型 10
2.2土壤彈簧參數之相關規範 11
2.2.1日本道路橋示方書 11
2.2.2土壤彈簧參數 16
第三章 橋梁案例分析 23
3.1原始震波之使用 23
3.2等高橋墩案例與不等高橋墩案例Ⅰ、Ⅱ反應比較 25
3.2.1柱頂反應之比較 26
3.2.2柱底受力之比較 29
3.2.3數值方法於柱頂反應之影響 32
3.2.4統計概念描述固定基礎與直接基礎搖擺反應與各物理量之 比較 33
第四章 希爾伯特-黃轉換之應用 83
4.1希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 83
4.1.1經驗模態分解法(Empirical Mode Decomposition, EMD) 84
4.1.2希爾伯特轉換(Hilbert Transform) 85
4.1.3希爾伯特頻譜(Hilbert Spectrum) 86
4.1.4 HHT頻譜之總體平均訊號強化方法 87
4.1.5時頻譜上瞬時頻率之讀取 88
4.1.6強震訊號時頻譜及其相關附圖之資訊 89
4.2固定基礎與直接基礎搖擺反應下之週期 90
4.2.1固定基礎與直接基礎搖擺於HHT時頻譜之比較 90
4.2.2直接基礎搖擺反應對結構模態貢獻之關係 95
4.2.3觀察HHT時頻譜於固定基礎與直接基礎搖擺之案例是否共振 96
4.3直接基礎搖擺反應作用時頻率下降率與各物理量之關係 97
4.3.1搖擺反應與頻率下降率於柱頂反應之之比較 98
4.3.2搖擺反應與頻率下降率於柱底受力之之比較 100
第五章 結論與未來展望 148
5.1結論 148
5.2未來展望 151
參考文獻 153
附錄A 159
參考文獻 參考文獻
[1] Winkler, E., 1867, “Die lehre von der elasticitaet und festigkeit,” prag, dominicus.
[2] Housner, G. W., “The behavior of inverted pendulum structures during earthquakes”, Bulletin of the Seismological of America, Vol.53, No.2, pp. 403-417. February ,1963.
[3] Sakellaraki, D., Watanabe, G. and Kawashima, K., “Experimental rocking response of direct foundation of bridge”, Second International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan, pp497-504.March 7-8 ,2005.
[4] Sakellaraki, D. and Kawashima, K., “Effectiveness of seismic rocking isolation of bridges based on shake table test”, First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, September 3-8, 2006.
[5] Kawashima, K. and Unjoh, S. “Rocking response of a rigid foundation subjected to seismic excitations”, Civil Engineering Journal, Japan, Vol.32, No.10, pp60-66, 1989.
[6] Kawashima, K. and Unjoh, S. “Overturning of rigid foundation resting on ground with insufficient yield strength”, Civil Engineering Journal, Japan, Vol.33, No.3, pp54-59, 1991.
[7] Kawashima, K., Unjoh, S. and Mukai, H., “Inelastic rocking of direct foundation during earthquake”, Civil Engineering Journal, Japan, Vol.36, No.7, pp50-55, 1994.
[8] Mergos, P.E. and Kawashima, K., “Rocking isolation of a typical bridge pier on spread foundation”, Journal of Engineering, Vol. 9, No.2, pp395-414, 2005.
[9] Kawashima, K., “Rocking seismic isolation of bridges supported by direct foundations”, Caltrans-PEER Seismic Research Seminar Sacramento, CA, USA, 2009.
[10] Davis, J.B. and George, H., “Dynamic response considering rocking of foundations”, ECI 285-Computational Geomechanics, 2005.
[11] Kawashima, K., Watanabe, G., Sakellaraki, D. and Nagai, T., “Rocking isolation of bridge foundations”, 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan, June 13-16, 2005.
[12] Kawashima, K. and Nagai, T., “Effectiveness of rocking seismic isolation on bridge”, 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 12-13, 2006.
[13] Apostolou, M., Gazetas, G. and Garini, E., “Seismic response of slender rigid structures with foundation uplifting”, Soil Dynamics and Earthquake Engineering, Vol.27, pp.642-654, December 2006.
[14] Raychowdhury, P. “Nonlinear Winkler-based shallow foundation model for performance assessment of seismically loaded structures”, University of California, San Diego, 2008.
[15] Hung, H. H., Liu, K. Y., Ho, T. H. and Chang, K. C., “An experimental study on the rocking response of bridge piers with spread footing foundations”, Earthquake Engineering Structural Dynamics, Vol. 40, pp. 749-769, 2010.
[16] Deng, L., Kutter, B. L. and Kunnath, S. K., “Centrifuge modeling of bridge systems designed for rocking foundations,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.3, pp.335-344. 2012.
[17] Wiebe, L., Christopoulos, C., Tremblay, R. and Leclerc, M., “Mechanisms to limit higher mode effects in a controlled rocking frame. 1: Concept, modelling, and low-amplitude shake table testing,” Earthquake Engineering and Structure Dynamics, September 24, 2012.
[18] 黃敏彥,「橋梁直接基礎搖擺之極限分析」,國立中央大學土木工程學研究所碩士論文,2013年。
[19] 李弘淵,「橋梁直接基礎搖擺極限破壞分析」,國立中央大學土木工程學研究所碩士論文,2014年。
[20] Kim, D. K., Lee, S. H., Kim, D. S., Choo, Y. W. and Park, H. G., “Rocking effect of a mat foundation on the earthquake response of structures”, J. Geotech. Geoenviron. Eng. Vol.141, No.1, 10.1061/(ASCE)GT.1943-5606.0001207, 2015.
[21] 周煌鈞,「橋梁直接基礎搖擺實驗」,國立中央大學土木工程學研究所碩士論文,2015年。
[22] Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N. C. Yen, C. C. Tung, H. H. Liu, “The Empirical Mode
Decomposition and the Hilbert Spectrum for Nonlinear and
Non-Stationary Time Series Analysis,” Proceeding of the Royal
Society of London A., Vol. 454A, pp. 903-995, March 1998.
[23] Wu, Z., and Huang, N. E., “A Study of the Characteristics of WhiteNoise Using the Empirical Mode Decomposition Method,” Proc.Roy. Soc. London, Vol. 460A, pp. 1597-1611, The Royal Society, 2004.
[24] Wu, Z., Huang, N. E., Long, S. R. and Peng, C.K., “On the trend,detrending, and the variability of nonlinear and non-stationary timeseries,” Proc. Natl. Acad. Sci., Vol. 104, pp.14889-14894, National Acad Sciences, 2007.
[25] 蘇聖中,「結構物強震資料之『希爾伯特-黃』結構健康診斷方法」,國立中央大學,博士論文,2015年。
[26] 劉德俞,「應用希爾伯特轉換方法改進結構系統識別方法於橋 梁震動訊號之研究」,國立中央大學,博士論文,2011年。
[27] 陳仁傑,「希爾伯特轉換(HHT)於變速之齒輪故障診斷之應用」,國立中央大學,碩士論文,2011年。
[28] 林澂,「應用希爾伯特黃轉換於探究非線性生醫訊號特徵」,國立中央大學,碩士論文,2012 年。
[29] 許時挺,「以希爾伯特-黃轉換抑制肺音中心音干擾」,國立中央大學,碩士論文,2012 年。
[30] Yi-Hsuan Chen, Wei-Hsin Liao, Chien-Liang Lee and Yen-Pa Wang, “Seismic isolation of viaduct piers by means of a rocking
mechanism,” Earthquake Engineering and Structure Dynamics,
pp. 713-736, 2006.
[31] Huang, N. E., M. J. Brenner, and L. Salvino, “Hilbert-Huang
Transform Stability Spectral Analysis Applied to Flutter Flight Test Data,” AAIA journal, Vol. 44 issue 4, pp.772-786, American
Institute of Aeronautics and Astronautics, April 2006.
[32] Espinoza, A. and Mahin S., “Rocking of Bridge Piers Subjected to Multi-Directional Earthquake Excitation’, Fifth National Seismic Conference on Bridge & Highways, San Francisco, CA, September 18-20, 2006.
[33] 交通部技術標準規範公路類公路工程部,「公路橋梁耐震設計規範」,交通部頒布,2008 年。
[34] 洪曉慧、張國鎮、劉光晏,何姿慧,「直接基礎之搖擺實驗與 分析」,國家地震工程研究中心,報告編號:NCREE-08-040, 2008年。
[35] Raychowdhury, P. and Hutchinson, T. C., “Performance evaluation of a nonlinear Winkler-based shallow foundation model using centrifuge test results,” Earthquake Engng Struct. Dyn., Vol. 38, pp. 679-698, 2009.
[36] AASHTO, AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition, American Association of State Highway and Transportation Officials, Washington DC, 2011.
[37] 日本道路協會,「日本道路橋樑示方書‧IV下部構造篇」, 2012年。
[38] 宋裕棋,「公路橋梁耐震性能設計規範研究(第二期)下 冊」,交通部台灣區國道新建工程局,2012年。
[39] Deng, L., Kutter, B. L. and Kunnath S. K.,“Seismic Design of
Rocking Shallow Foundation: Displacement-Based Methodology”,
Journal of Bridge Engeering, Vol.19, No.11,10.1061/(ASCE)BE.
1943-5592.0000616, 2014.
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2019-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明