參考文獻 |
楊炳隆,2009:不同地域雲凝結核微物理特性之探討。國立中央大學,大氣物理研究所碩士論文,中壢。
李嘉仁,2017:平流層侵入對東亞地區自由對流層臭氧之影響。國立中央大學,化學研究所碩士論文,中壢。
Almeida, G., Brito, J., Morales, C., Andrade, M. d. F., and Artaxo, P.: Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction, Atmospheric Chemistry and Physics, 14, 7559-7572, 2014.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., and Silva-Dias, M.: Smoking rain clouds over the Amazon, science, 303, 1337-1342, 2004.
Bhattu, D., and Tripathi, S.: CCN closure study: Effects of aerosol chemical composition and mixing state, Journal of Geophysical Research: Atmospheres, 120, 766-783, 2015.
Bian, Y., Zhao, C., Ma, N., Chen, J., and Xu, W.: A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain, Atmospheric Chemistry and Physics, 14, 6417-6426, 2014.
Bilde, M., and Svenningsson, B.: CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase, Tellus B: Chemical and Physical Meteorology, 56, 128-134, 2004.
Blot, R., Clarke, A. D., Freitag, S., Kapustin, V., Howell, S. G., Jensen, J. B., Shank, L. M., McNaughton, C. S., and Brekhovskikh, V.: Ultrafine sea spray aerosol over the southeastern Pacific: open-ocean contributions to marine boundary layer CCN, Atmospheric Chemistry and Physics, 13, 7263-7278, 10.5194/acp-13-7263-2013, 2013.
Bosilovich, M., Lucchesi, R., and Suarez, M.: MERRA-2: File specification, 2015.
Boucher, O., and Lohmann, U.: The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models, Oceanographic Literature Review, 2, 122, 1996.
Brock, C. A., Wagner, N. L., Attwood, A. R., Campuzano-Jost, P., Day, D. A., and Jimenez, J. L.: Aerosol optical properties in the southeastern United States in summer-Part 1: Hygroscopic growth, Atmospheric Chemistry and Physics, 16, 2016.
Burkart, J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna, Atmospheric Environment, 45, 5751-5759, 10.1016/j.atmosenv.2011.07.022, 2011.
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., and Jobson, B. T.: Radiative absorption enhancements due to the mixing state of atmospheric black carbon, Science, 337, 1078-1081, 2012.
Castarède, D., and Thomson, E. S.: A thermodynamic description for the hygroscopic growth of atmospheric aerosol particles, Atmospheric Chemistry and Physics Discussions, 1-16, 10.5194/acp-2018-460, 2018.
Chen, J., Zhao, C., Ma, N., and Yan, P.: Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain, Atmospheric Chemistry and Physics, 14, 8105-8118, 2014.
Davis, R. D., Lance, S., Gordon, J. A., Ushijima, S. B., and Tolbert, M. A.: Contact efflorescence as a pathway for crystallization of atmospherically relevant particles, Proceedings of the National Academy of Sciences, 112, 15815-15820, 2015.
Deng, Z., Zhao, C., Ma, N., Liu, P., Ran, L., Xu, W., Chen, J., Liang, Z., Liang, S., and Huang, M.: Size-resolved and bulk activation properties of aerosols in the North China Plain, Atmospheric Chemistry and Physics, 11, 3835-3846, 2011.
Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J., Jimenez, J., Quinn, P., Bates, T., Wang, J., and Zhang, Q.: CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations, Atmospheric Chemistry and Physics, 10, 4795-4807, 2010.
Farmer, D. K., Cappa, C. D., and Kreidenweis, S. M.: Atmospheric processes and their controlling influence on cloud condensation nuclei activity, Chemical Reviews, 115, 4199-4217, 2015.
Fitzgerald, J., and Hoppel, W.: Measurement of the relationship between the dry size and critical supersaturation of natural aerosol particles, J. Hung. Meteorol. Serv, 86, 242-248, 1982.
Fitzgerald, J. W.: Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition, Journal of the Atmospheric Sciences, 30, 628-634, 1973.
Florou, K., Papanastasiou, D. K., Pikridas, M., Kaltsonoudis, C., Louvaris, E., Gkatzelis, G. I., Patoulias, D., Mihalopoulos, N., and Pandis, S. N.: The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities, Atmospheric Chemistry and Physics, 17, 3145-3163, 2017.
Furutani, H., Dall’osto, M., Roberts, G. C., and Prather, K. A.: Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations, Atmospheric Environment, 42, 3130-3142, 2008.
Gunthe, S., King, S., Rose, D., Chen, Q., Roldin, P., Farmer, D., Jimenez, J., Artaxo, P., Andreae, M., and Martin, S.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmospheric Chemistry and Physics, 9, 7551-7575, 2009.
Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing, Atmospheric Chemistry and Physics, 11, 11023-11039, 10.5194/acp-11-11023-2011, 2011.
Hasan, H., and Dzubay, T.: Apportioning light extinction coefficients to chemical species in atmospheric aerosol, Atmospheric Environment, 17, 1573-1581, 1983.
Hoek, G., Boogaard, H., Knol, A., De Hartog, J., Slottje, P., Ayres, J. G., Borm, P., Brunekreef, B., Donaldson, K., and Forastiere, F.: Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: results of a European expert panel elicitation, Environmental science & technology, 44, 476-482, 2009.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., and Chen, Y.-C.: Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan, Science of the Total Environment, 541, 1139-1150, 2016.
Huang, Y., Chameides, W. L., and Dickinson, R. E.: Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia, Journal of Geophysical Research: Atmospheres, 112, 2007.
Hudson, J. G.: An instantaneous CCN spectrometer, Journal of Atmospheric and Oceanic Technology, 6, 1055-1065, 1989.
Hudson, J. G., and Da, X.: Volatility and size of cloud condensation nuclei, Journal of Geophysical Research: Atmospheres, 101, 4435-4442, 1996.
Hung, H.-M., Lu, W.-J., Chen, W.-N., Chang, C.-C., Chou, C. C. K., and Lin, P.-H.: Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions, Atmospheric Environment, 84, 78-87, 10.1016/j.atmosenv.2013.11.032, 2014.
Jaffe, D., Yurganov, L., Pullman, E., Reuter, J., Mahura, A., and Novelli, P.: Measurements of CO and O3 at Shemya, Alaska, Journal of Geophysical Research: Atmospheres, 103, 1493-1502, 1998.
Junge, C.: Das Wachstum der Kondensationskerne mit der relativen Feuchtigkeit, Annalen der Meteorologie, 3, 129-135, 1950.
Junge, C., and McLaren, E.: Relationship of cloud nuclei spectra to aerosol size distribution and composition, Journal of the Atmospheric Sciences, 28, 382-390, 1971.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Transactions of the Faraday Society, 32, 1152-1161, 1936.
Kleinman, L. I.: The dependence of tropospheric ozone production rate on ozone precursors, Atmospheric Environment, 39, 575-586, 2005.
Kondo, Y., Takegawa, N., Matsui, H., Miyakawa, T., Koike, M., Miyazaki, Y., Kanaya, Y., Mochida, M., Kuwata, M., and Morino, Y.: Formation and transport of aerosols in Tokyo in relation to their physical and chemical properties: A review, Journal of the Meteorological Society of Japan. Ser. II, 88, 597-624, 2010.
Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S., Eleftheriadis, K., and Pandis, S.: Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean, Atmospheric Chemistry and Physics, 15, 11355-11371, 2015.
Kuang, Y., Zhao, C., Tao, J., and Ma, N.: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect, Atmospheric Chemistry and Physics, 15, 5761-5772, 2015.
Kuwata, M., Kondo, Y., and Takegawa, N.: Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo, Journal of Geophysical Research: Atmospheres, 114, 2009.
Lance, S., Raatikainen, T., Onasch, T. B., Worsnop, D. R., Yu, X.-Y., Alexander, M., Stolzenburg, M., McMurry, P., Smith, J. N., and Nenes, A.: Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006, Atmospheric Chemistry and Physics, 13, 5049-5062, 2013.
Lathem, T. L., and Nenes, A.: Water vapor depletion in the DMT continuous-flow CCN chamber: Effects on supersaturation and droplet growth, Aerosol Science and Technology, 45, 604-615, 2011.
Leng, C., Cheng, T., Chen, J., Zhang, R., Tao, J., Huang, G., Zha, S., Zhang, M., Fang, W., and Li, X.: Measurements of surface cloud condensation nuclei and aerosol activity in downtown Shanghai, Atmospheric environment, 69, 354-361, 2013.
Li, W., Shao, L., Shi, Z., Chen, J., Yang, L., Yuan, Q., Yan, C., Zhang, X., Wang, Y., and Sun, J.: Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent, Journal of Geophysical Research: Atmospheres, 119, 1044-1059, 2014.
Lin, C.-Y., Liu, S. C., Chou, C. C., Liu, T. H., Lee, C.-T., Yuan, C.-S., Shiu, C.-J., and Young, C.-Y.: Long-range transport of Asian dust and air pollutants to Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 15, 759-784, 2004.
Lin, C.-Y., Liu, S. C., Chou, C. C.-K., Huang, S.-J., Liu, C.-M., Kuo, C.-H., and Young, C.-Y.: Long-range transport of aerosols and their impact on the air quality of Taiwan, Atmospheric Environment, 39, 6066-6076, 2005.
Low, R. D.: A generalized equation for the solution effect in droplet growth, Journal of the Atmospheric Sciences, 26, 608-611, 1969.
Martin, S. T.: Phase transitions of aqueous atmospheric particles, Chemical Reviews, 100, 3403-3454, 2000.
Massoli, P., Lambe, A., Ahern, A., Williams, L., Ehn, M., Mikkilä, J., Canagaratna, M., Brune, W., Onasch, T., and Jayne, J.: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, Geophysical Research Letters, 37, 2010.
Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Fast, J. D., Pöschl, U., Garland, R., Andreae, M., Wiedensohler, A., and Sugimoto, N.: Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties, Journal of Geophysical Research: Atmospheres, 115, 2010.
McDonald, J. E.: Erroneous cloud-phy sics applications of raoult′s law, Journal of Meteorology, 10, 68-70, 1953.
McMeeking, G., Good, N., Petters, M., McFiggans, G., and Coe, H.: Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere, Atmospheric Chemistry and Physics, 11, 5099-5112, 2011.
McMurry, P. H.: A review of atmospheric aerosol measurements, Atmospheric Environment, 34, 1959-1999, 2000.
Mei, F., Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., Kuster, W., Gouw, J., Jimenez, J. L., and Wang, J.: Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA, Journal of Geophysical Research: Atmospheres, 118, 2903-2917, doi:10.1002/jgrd.50285, 2013.
Mertes, S., Lehmann, K., Nowak, A., Massling, A., and Wiedensohler, A.: Link between aerosol hygroscopic growth and droplet activation observed for hill-capped clouds at connected flow conditions during FEBUKO, Atmospheric Environment, 39, 4247-4256, 2005.
Nenes, A., Chuang, P. Y., Flagan, R. C., and Seinfeld, J. H.: A theoretical analysis of cloud condensation nucleus (CCN) instruments, Journal of Geophysical Research: Atmospheres, 106, 3449-3474, 2001.
Olivier, J., Bouwman, A., Berdowski, J., Veldt, C., Bloos, J., Visschedijk, A., Van der Maas, C., and Zandveld, P.: Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1× 1, Environmental Science & Policy, 2, 241-263, 1999.
Padró, L., Moore, R., Zhang, X., Rastogi, N., Weber, R., and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, Atmospheric Chemistry and Physics, 12, 10239-10255, 2012.
Peng, J., Hu, M., Wang, Z., Huang, X., Kumar, P., Wu, Z., Guo, S., Yue, D., Shang, D., and Zheng, Z.: Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production, Atmospheric Chemistry and Physics, 14, 10249-10265, 2014.
Petters, M., and Kreidenweis, S.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7, 1961-1971, 2007.
Pruppacher, H. R., and Klett, J. D.: Microphysics of Clouds and Precipitation: Reprinted 1980, Springer Science & Business Media, 2012.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmospheric Chemistry and Physics, 6, 471-491, 2006.
Rose, D., Gunthe, S., Mikhailov, E., Frank, G., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmospheric Chemistry and Physics, 8, 1153-1179, 2008.
Rosenfeld, D., Lohmann, U., Raga, G. B., O′Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309-1313, 2008.
Saxena, P., Hildemann, L. M., McMurry, P. H., and Seinfeld, J. H.: Organics alter hygroscopic behavior of atmospheric particles, Journal of Geophysical Research: Atmospheres, 100, 18755-18770, 1995.
Saxena, V., Burford, J., and Kassner Jr, J.: Operation of a thermal diffusion chamber for measurements on cloud condensation nuclei, Journal of the Atmospheric Sciences, 27, 73-80, 1970.
Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2012.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., and Kahn, R.: Improving our fundamental understanding of the role of aerosol− cloud interactions in the climate system, Proceedings of the National Academy of Sciences, 113, 5781-5790, 2016.
Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2016.
Semeniuk, T. A., Wise, M. E., Martin, S. T., Russell, L. M., and Buseck, P. R.: Water uptake characteristics of individual atmospheric particles having coatings, Atmospheric Environment, 41, 6225-6235, 2007.
Shao, M., Tang, X., Zhang, Y., and Li, W.: City clusters in China: air and surface water pollution, Frontiers in Ecology and the Environment, 4, 353-361, 2006.
Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young, T. E.: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophysical Research Letters, 23, 277-280, 1996.
Sihto, S.-L., Mikkilä, J., Vanhanen, J., Ehn, M., Liao, L., Lehtipalo, K., Aalto, P., Duplissy, J., Petäjä, T., and Kerminen, V.-M.: Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest, Atmospheric Chemistry and Physics, 11, 13269-13285, 2011.
Solomon, S.: Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge university press, 2007.
Souto-Oliveira, C. E., Andrade, M. d. F., Kumar, P., Lopes, F. J. d. S., Babinski, M., and Landulfo, E.: Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil, Atmospheric Chemistry and Physics, 16, 14635-14656, 10.5194/acp-16-14635-2016, 2016.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American Meteorological Society, 96, 2059-2077, 2015.
Stevens, B., and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461, 607, 2009.
Stock, M., Cheng, Y., Birmili, W., Massling, A., Wehner, B., Müller, T., Leinert, S., Kalivitis, N., Mihalopoulos, N., and Wiedensohler, A.: Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions, Atmospheric Chemistry and Physics, 11, 4251-4271, 2011.
Streets, D. G., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., Klimont, Z., Nelson, S., Tsai, N., and Wang, M. Q.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Journal of Geophysical Research: Atmospheres, 108, 2003.
Streets, D. G., Yu, C., Wu, Y., Chin, M., Zhao, Z., Hayasaka, T., and Shi, G.: Aerosol trends over China, 1980–2000, Atmospheric Research, 88, 174-182, 2008.
Swietlicki, E., HANSSON, H. C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P., Petäjä, T., Tunved, P., and Gysel, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H‐TDMA instruments in various environments—A review, Tellus B: Chemical and Physical Meteorology, 60, 432-469, 2008.
Takemura, T., Uno, I., Nakajima, T., Higurashi, A., and Sano, I.: Modeling study of long‐range transport of Asian dust and anthropogenic aerosols from East Asia, Geophysical Research Letters, 29, 2002.
Tang, I.: Phase transformation and growth of aerosol particles composed of mixed salts, Journal of Aerosol Science, 7, 361-371, 1976.
Tang, I., Munkelwitz, H., and Davis, J.: Aerosol growth studies—IV. Phase transformation of mixed salt aerosols in a moist atmosphere, Journal of Aerosol Science, 9, 505-511, 1978.
Tang, I., Wong, W., and Munkelwitz, H.: The relative importance of atmospheric sulfates and nitrates in visibility reduction, Atmospheric Environment, 15, 2463-2471, 1981.
Tao, J., Zhao, C., Ma, N., and Liu, P.: The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO 2 photolysis rate coefficient, Atmospheric Chemistry and Physics, 14, 12055-12067, 2014.
Thalman, R., de Sá, S. S., Palm, B. B., Barbosa, H. M. J., Pöhlker, M. L., Alexander, M. L., Brito, J., Carbone, S., Castillo, P., Day, D. A., Kuang, C., Manzi, A., Ng, N. L., Sedlacek Iii, A. J., Souza, R., Springston, S., Watson, T., Pöhlker, C., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., Martin, S. T., and Wang, J.: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions, Atmospheric Chemistry and Physics, 17, 11779-11801, 10.5194/acp-17-11779-2017, 2017.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J., Olmo, F., and Alados-Arboledas, L.: Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources, Atmospheric Environment, 141, 494-507, 2016.
Tseng, K.-H., Wang, J.-L., Cheng, M.-T., and Tsuang, B.-J.: Assessing the relationship between air mass age and summer ozone episodes based on photochemical indices, Aerosol and Air Quality Resarch, 9, 149-171, 2009.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences, 34, 1149-1152, 1977.
Wallace, J. M., and Hobbs, P. V.: Atmospheric science: an introductory survey, Elsevier, 2006.
Wang, J., Cubison, M., Aiken, A., Jimenez, J., and Collins, D.: The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmospheric Chemistry and Physics, 10, 7267-7283, 2010.
Wang, Y., Hopke, P. K., Rattigan, O. V., and Zhu, Y.: Characterization of ambient black carbon and wood burning particles in two urban areas, Journal of Environmental Monitoring, 13, 1919-1926, 2011.
Wang, Z., Cheng, Y., Ma, N., Mikhailov, E., Pöschl, U., and Su, H.: Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: implications for laboratory experiments, field measurements and model studies, Atmospheric Chemistry and Physics Discussions, 1-33, 10.5194/acp-2017-253, 2017.
Watson, J. G.: Visibility: Science and regulation, Journal of the Air & Waste Management Association, 52, 628-713, 2002.
Xiaohong, L., and Jian, W.: How important is organic aerosol hygroscopicity to aerosol indirect forcing?, Environmental Research Letters, 5, 044010, 2010.
Yau, M. K., and Rogers, R.: A short course in cloud physics, Elsevier, 1996.
Young, K. C.: Microphysical processes in clouds, Oxford University Press, 1993.
Yue, D., Hu, M., Zhang, R., Wu, Z., Su, H., Wang, Z., Peng, J., He, L., Huang, X., and Gong, Y.: Potential contribution of new particle formation to cloud condensation nuclei in Beijing, Atmospheric Environment, 45, 6070-6077, 2011.
Yum, S. S., Hudson, J. G., Song, K. Y., and Choi, B. C.: Springtime cloud condensation nuclei concentrations on the west coast of Korea, Geophysical research letters, 32, 2005.
Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., and Li, J.: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC 3 Exp campaign: implications for cloud condensation nuclei parameterization, Atmospheric Chemistry and Physics, 14, 13423-13437, 2014.
Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., Sun, Y., Yang, X., and Li, Z.: Uncertainty in predicting CCN activity of aged and primary aerosols, Journal of Geophysical Research: Atmospheres, 2017a.
Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., and Zhao, D.: Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China, Science of The Total Environment, 502, 578-584, 2015.
Zhang, S., Ma, N., Kecorius, S., Wang, P., Hu, M., Wang, Z., Größ, J., Wu, Z., and Wiedensohler, A.: Mixing state of atmospheric particles over the North China Plain, Atmospheric Environment, 125, 152-164, 2016.
Zhang, Z., Shen, Y., Li, Y., Zhu, B., and Yu, X.: Analysis of extinction properties as a function of relative humidity using a κ-EC-Mie model in Nanjing, Atmospheric Chemistry and Physics, 17, 4147-4157, 2017b.
Zhao, D., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Kiendler‐Scharr, A., Tillmann, R., Wahner, A., Flores, J., and Rudich, Y.: Size‐dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei, Geophysical research letters, 42, 10,920-910,928, 2015.
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmospheric Chemistry and Physics, 13, 10609-10631, 2013. |