參考文獻 |
1. 法麗佳 (Farichah, Himatul),「Representative elementary volume of P32 and hydraulic conductivity of fractured rock masses」,國立中央大學土木工程學系,碩士論文,中壢 (2017)。
2. 田永銘、盧育辰、許哲睿、法麗佳、陳虹君,「不連續異質性岩體力學性質與幾何特性之變異性(III)」,科技部專題研究計畫期末報告,MOST 104-2221-E-008-089- (2016)。
3. 許哲睿,「岩體裂隙程度與力學性質之不確定性」,國立中央大學土木工程學系,碩士論文,中壢 (2017)。
4. 吳宛庭,「三維裂隙網路升尺度方法推估等效參數之差異評估」,國立中央大學應用地質學系,碩士論文,中壢 (2016)。
5. Ahmed Elfeel, M., “Improved upscaling and reservoir simulation of enhanced oil recovery processes in naturally fractured reservoirs, ” Diss. Heriot-Watt University, (2014).
6. Amaziane, B., and T. Hontans, “Equivalent permeability and simulation of two-phase flow in heterogeneous porous media,” Computers & Geosciences, Vol. 5, pp. 279-300 (2002).
7. Baecher, G. B., Lanney, N. A. and Einstein, H. H., “Statistical description of rock properties and sampling” Proceedings of 18th US Symposium on Rock Mechanics, 5C1-1 to 5C1-8, (1977).
8. Baghbanan, A., and Jing, L., “Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture,” International Journal of Rock Mechanics and Mining Sciences, Vol. 45(8), 1320-1334 (2008).
9. Bear, J., “Dynamic of Fluids in Porous Media,” American Elsevier, New York, USA, pp.19-21 (1972).
10. Brady, B.H.G. and Brown, E.T. “Rock Mechanics for Underground Mining,” Allen & Unwin (1985).
11. Bogdanov, I. I., V. V. Mourzenko, J.-F. Thovert, and Adler, P. M., “Effective permeability of fractured porous media in steady state flow,” Water Resources Research, Vol. 39(1), pp. 1023 (2003).
12. Caine J.S., and S.R.A. Tomusiak, “Brittle structures and theirrole in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range,” Geological Society of America Bulletin, Vol. 115, pp. 1410-1424 (2003).
13. Chesnaux, R., Allen, D.M., and Jenni, S., “Regional fracture network permeability using outcrop scale measurements,” Hydrogeology Journal, Vol. 108, pp. 259-271 (2009).
14. Decroux, B., and O. Gosselin, “Computation of effective dynamic properties of naturally fractured reservoirs: Comparison and validation of methods,” European Association of Geoscientists and Engineers, London, UK, pp. 1-18 (2013).
15. Dershowitz, W.S., “Rock joint systems,” Ph.D. Dissertation, Massachusetts Institute of Technology (1984).
16. Dershowitz, W.S. and Einstein, H., “Characterizing rock joint geometry with joint system models,” Rock Mechanics and Rock Engineering, Vol. 21, pp. 2151 (1988).
17. Dershowitz, W.S., and Herda, H.H., “Interpretation of fracture spacing and intensity,” The 33th U.S. Symposium on Rock Mechanics, Santa Fe, New Mexico (1992).
18. Dershowitz, W.S., Personal communication (2007).
19. Dhillon, I.S. and Sra, S. “Modeling data using directional distributions,” Technical Report TR-03-06 (2003).
20. Esmaieli, K., Hadjigeorgiou, J. and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, pp. 915-926 (2010).
21. Elfeel, M.A., and S. Geiger, “Static and dynamic assessment of DFN permeability upscaling,” European Association of Geoscientists and Engineers, Copenhagen, Denmark, pp. 1-16 (2012).
22. Fisher, N.I.. “Statistical Analysis of Circular Data,” Cambridge University Press, (1996).
23. Grenon, M., and Hadjigeorgiou, J., “Fracture-SG, A fracture system generator software package,” Version 2.17(2008).
24. Hadjigeorgiou, J., Lessard, J.F., and Flament, F., “Characterizing in-situ block size distribution using a stereological model,” Tunneling Association of Canada Annual Publication (1995).
25. Jolly, R.J.H., Cosgrove, J.W. “Geological evidence of patterns of fluid flow through fracture networks: examination using random realizations and con-nectivity analysis. In: Ameen, M.S. (Ed.) Fracture and In-situ Stress Character-isation of Hydrocarbon Reservoirs,” Special Publications, Vol. 209, pp. 177-186 (2003).
26. Koudina, N., R. Gonzalez Garcia, J.-F. Thovert, and P. Adler, “Permeability of three-dimensional fracture networks,” Physical Review E, Vol. 57(4), pp. 4466-4479 (1998).
27. Ko, N.Y., Ji, S.H., Koh, Y.K., and Choi, J.W., “Evaluation of two conceptual approaches for groundwater flow simulation for a rock domain at the block-scale for the Olkiluoto site, Finland,” Engineering Geology, Vol. 193, pp. 297-304 (2015).
28. Klimczak, C., Schultz, R.A., Parashar, R., and Reeves, D.M., “Cubic law with aperture-length correlation: implications for network scale fluid flow,” Hydrogeology Journal, Vol. 18, No. 4, pp. 851-862 (2010).
29. Lang, P.S., Paluszny, A., and Zimmerman, R.W., “Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions” Journal of Geophysical Research: Solid Earth, Vol. 119, pp. 6288-6307 (2014).
30. Leung, C. T. O., and R. W. Zimmerman, “Estimating the hydraulic conductivity of two-dimensional fracture networks using network geometric properties,” Transport in Porous Media, Vol. 93(3), pp. 777–797 (2012).
31. Long, J. C. S., J. S. Remer, C. R. Wilson, and P. A. Witherspoon, “Porous media equivalents for networks of discontinuous fractures”, Water Resources Research, Vol. 8, No. 3, pp. 645-658 (1982).
32. Long, J.C.S., Gilmour, P. and Witherspoon, P.A., “A Model for Steady Fluid Flow in Random Three-Dimensional Networks of Disc-Shaped Fractures” Water Resources Research, Vol. 21, No. 8, pp. 1105-1115 (1985).
33. Mardia, K.V. and Jupp, P. “Directional Statistics,” John Wiley and Sons Ltd., 2nd edition (2000).
34. Min, K.B. and Jing, L., “Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp. 795-816 (2003).
35. Müller, Christian, Siegesmund, Siegfried. and Blum, Philip., “Evaluation of the representative elementary volume (REV) of a fractured geothermal sandstone reservoir,” Environmental Earth Sciences, Vol. 61, pp. 1713-1724 (2010).
36. Matthai, S. K., and M. Belayneh, “Fluid flow partitioning between fractures and a permeable rock matrix,” Geophysical Research Letters, Vol. 31(7) (2004).
37. Min, K.-B., J. Rutqvist, C.-F. Tsang, and L. Jing, Stress-dependent permeability of fractured rock masses: A numerical study, International Journal of Rock Mechanics and Mining Sciences, Vol. 41(7), pp. 1191–1210 (2004).
38. Nelson, R. A., “Geological Analysis of Naturally Fractured Reservoirs,” Gulf Publishing, Houston, Texas (2001).
39. Nick, H. M., A. Paluszny, M. J. Blunt, and S. K. Matthai, “Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations,” Physical Review E, Vol. 84(5), 056,301 (2011).
40. Nordahl, Kjetil. and Ringrose, Philip S., “Identifying the Representative Elementary Volume for Permeability in Heterolithic Deposits Using Numerical Rock Models,” Mathematical Geosciences, Vol. 40, pp. 753-771 (2008).
41. Nordahl, K., Messina, C., Berland, H., Rustad, A.B. and Rimstad, E., “Impact of multiscale modelling on predicted porosity and permeability distributions in the fluvial deposits of the Upper Lunde Member (Snorre Field, Norwegian Continental Shelf),” Special Publications, Vol. 387, pp. 85-109 (2014).
42. Oda, M., “Permeability tensor for discontinuous rock masses”, Geotechnique, Vol. 35, pp.483-495, (1985).
43. Ӧhman, J. and Niemi, A., “Upscaling of fracture hydraulics by means of an oriented correlated stochastic continuum model,” Water Resources Research, Vol. 39(10), SBH 3 1-13 (2003).
44. Pan, J.B., Lee, C.C., Lee, C.H., Yeh, H.F., and Lin, H.I., “Application of fracture network model with crack permeability tensor on flow and transport in fractured rock,” Engineering Geology, Vol. 116, pp. 166-177 (2010).
45. Pouya, A., and O. “Fouche, Permeability of 3D discontinuity networks: New tensors from boundary-conditioned homogenisation,” Advances in Water Resources, Vol. 32(3), pp. 303-314 (2009).
46. Reeves, D. M., R. Parashar, G. Pohll, R. Carroll, T. Badger, and K. Willoughby, “The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock,” Engineering Geology, Vol. 163, pp. 132-143 (2013).
47. Renard, P., and G. de Marsily, “Calculating equivalent permeability: A review,” Advances in Water Resources, Vol. 20(5-6), 253-278 (1997).
48. Rutqvist, J., C. Leung, A. Hoch, Y. Wang, and Z. Wang, “Linked multicontinuum and crack tensor approach for modeling of coupled geomechanics, fluid flow and transport in fractured rock,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5(1), pp. 18-31 (2013).
49. Snow, D.T., “Rock fracture spacings, openings, and porosities,” Journal of the Soil Mechanics and Foundations Division, Vol. 94(1), pp. 73-92 (1968).
50. Snow, D. T., “Anisotropie permeability of fractured media,” Water Resources Research, Vol. 5(6), pp. 1273-1289 (1969).
51. Surrette, M.J. and Allen, D.M. “Quantifying heterogeneity in variably fractured sedimentary rock using a hydrostructural domain,” Geological Society of America Bulletin, Vol. 120 (1-2), pp. 225-237 (2008).
52. Taylor, W. L., D. D. Pollard, and A. Aydin, “Fluid flow in discrete joint sets: Field observations and numerical simulations,” Journal of Geophysical Research, Vol. 104(B12), pp. 28983-29006 (1999).
53. van Golf-Racht, T., “Fundamentals of Fractured Reservoir Engineering,” Elsevier BV, Amsterdam (1982).
54. Watkins, H., Bond, C.E., Healy, D., Butler, R.W.H., “Appraisal of fracture sampling methods and a new workflow to characterize heterogeneous fracture networks at outcrop,” Journal of Structural Geology, Vol.72 pp.67-82 (2015).
55. Wu, Y.-S., C. Haukwa, and G. Bodvarsson, “A site-scale model for fluid and heat flow in the unsaturated zone of Yucca Mountain,” Journal of Contaminant Hydrology, Vol. 38(1-3), pp. 185-215 (1999).
56. Zhang, W., Chen, J., Chen, H., Xu, D. and Li, Y., “Determination of RVE with consideration of the spatial effect,” International Journal of Rock Mechanics and Mining Sciences, Vol. 61, pp. 154-160 (2013)
57. Zimmerman, R., and G. S. Bodvarsson, “Effective transmissivity of two-dimensional fracture networks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 33(4), pp. 433-438 (1996).
58. Zhang, X., D. Sanderson, R. Harkness, and N. Last, “Evaluation of the 2-D permeability tensor for fractured rock masses,” International Journal of Rock Mechanics and Mining Sciences, Vol. 33(1), pp. 17-37 (1996). |