摘要(英) |
Abstract
The limited resources of land in Taiwan are limited. Over the years, the Chinese government has been pursuing economic construction, continuously enriching various public constructions, and the flourishing of civil engineering, which has led to the depletion of river sandstone resources, which are important materials for engineering. With the development of the national public engineering infrastructure, the accompanying problems have also been generated. In addition, the domestic environmental awareness has risen in recent years, and most of the constructions are based on the principle of environmental protection recycling and resource sustainability.
Therefore, in recent years, we have continuously researched and advocated the reprocessing and recycling of planed material recovery, and the results and feasibility have been well harvested. The current government regulations clearly stipulate that the maintenance of pavement works must be added with recycled materials, which can reduce the amount of earth and stone. The budget can be saved by discounted funds. The amount of recycled materials has reached 40% in the Republic of China in 1993 (excluding expressways). Recycled asphalt concrete not only emphasizes resource recovery but also protects mountains and rocks, and saves costs to achieve three-fold success. Results.
Therefore, this study establishes a discussion platform for planing materials, recycled pellets and recycling economy to provide relevant and up-to-date information, including references to circular economy related manuals and briefings, and detailed information on recycled pellets, which is conducive to the promotion of circular economy. |
參考文獻 |
1. 林志棟, 「瀝青混凝土配合設計及其原理」, 公共工程品質管理系列1988, 台北.
2. 公共工程委員會, 施工綱要規範 02741 章, 「瀝青混凝土之一般要求」.
3.公共工程委員會, 施工綱要規範 02742 章, 「瀝青混凝土之一般要求」.
4.公共工程委員會, 施工綱要規範 02722 章, 「瀝青混凝土之一般要求」.
5.公共工程委員會, 施工綱要規範 02726 章, 「瀝青混凝土之一般要求」.
6. 「經濟部再生利用之再生資源項目及規範」
7. 轉爐石應用於瀝青混凝土鋪面使用手冊.106.7.24.
8. 電弧爐煉鋼氧化碴應用於瀝青混凝土鋪面試行使用手冊107.5.28
9. Chowdhury, A. and J.W. Button, ”A review of warm mix asphalt”. Texas A&M University System, 2008.
10. Kristjansdottir, O., ”Warm Mix Asphalt for Cold Weather Paving”, 2006,University of Washington.
11. Prowell, B.D., G.C. Hurley, and B. Frank, ”Warm-mix asphalt: Best practices”2007: National Asphal Pavement Association.
12. 林志棟、陳順興, 「淺談溫拌式瀝青滋凝土應用之探討」, 技師月刊,2006(42): p. 119-124.
13. Zhang, R.H., Y.K. Zou, and Y.M. Yin, Application of warm-mix modified asphalt mixture in highway maintenance project. International Journal of Pavement Research and Technology, 2009. 2(4).
14. Angelo, J., et al., ”Warm–Mix Asphalt: European Practice. Federal Highway Administration (FHWA) ”, 2008, Report No. FHWA–PL–08–007,February, 2008. Washington DC, USA.
15. Soenen, H., et al., Foamed Bitumen in Half-Warm Asphalt: A Laboratory Study. International Journal of Pavement Research and Technology, 2010. 3(4).
16. Mallick, R.B. and G. Hendrix, Use of foamed asphalt in recycling incinerator ash for construction of stabilized base course. Resources, conservation and recycling, 2004. 42(3): p. 239-248. 109
17. 林志棟, 「溫拌瀝青與泡沫瀝青混凝土應用於亞熱帶地區鋪面工程之可行性研究」, 2011, 國家科學委員會.
18. 余政儒, 「瀝青混凝土添加石灰耐久性之研究」, 國立中央大學, 碩士論文, 中壢. 1994.
19. 王睿懋, 「亞熱帶地區提昇再生瀝青混凝土耐久性之研究 」, 國立中央大學, 博士論文, 中壢, 2009.
20. 侯此威, 「溫拌再生瀝青混凝土水份侵害特性之研究」, 淡江大學, 碩士論文, 台北, 2011.
21. Roberts, F.L., et al., Hot mix asphalt materials, mixture design and construction. 1996.
22. O’Sullivan, K., 100 Percent Recycling–Sustainability in Pavement Construction. IRF News, 2009.
23. Pratheepan, K., Use of reclaimed asphalt pavements (RAP) in airfield HMA pavements, 2009, University of Nevada, Reno.
24. Performance Evaluation of High RAP Surface Mixture Containing Sasobit®, 2005, Advanced Asphalt Technologies. 111
25. 吳國洋, 「混凝土製品應用於土木工程之減碳效益評估 -以道路、建築工程為例」, 國立中央大學, 碩士論文, 中壢, 2011.
26. 環科工程股份有限公司, 「溫室氣體盤查實務」,2010.
27. Silva, H.M.R.D., et al., Assessment of the Performance of Warm Mix Asphalts in Road Pavements. International Journal of Pavement Research and Technology, 2010. 3(3).
28. 林志忠, 「公共工程使用再生材料落實節能減碳初步探討」,國立中央大學, 碩士論文, 中壢,2010
29. Hammond, G. and C.I. Jones, Embodied energy and carbon in construction materials. Proceedings of the ICE Energy, 2008. 161(2): p. 87-98. |