參考文獻 |
1. T. Karaki, K. Yan, T. Miyamoto, M Adachi, Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder. Japanese Journal of Applied Physics .46, 97−98 (2007).
2. L. S. Miller, J. B. Mullin, Electronic Materials: From Silicon to Organics. Springer (1991).
3. J. Rodel, M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews .4, 041305 (2017).
4. X. Cai, T. Lei, D. Sund and L.W. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7, 15382 (2017).
5. Z. L.Wang, J Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 14, 242-246 (2006).
6. M. T. Todaroa, F. Guidoa, V. Mastronardia, D. Desmaelea, G. Epifania, L. Algieria, M. D. Vittorioa, Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectronic Engineering 5, 23–36 (2017)
7. J. Yan, Y. G. Jeong, High Performance Flexible Piezoelectric Nanogenerators
based on BaTiO3 Nanofibers in Different Alignment Modes. ACS Appl. Mater.
Interfaces 8, 15700−15709 (2016).
8. X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V Nanogenerator for Mechanical Energy
Harvesting Using PZT Nanofibers. Nano Lett 10, 2133–2137 (2010).
9. M. Alexe, S. Senz, M. A. Schubert, D. Hesse, U. Go¨sele, Energy Harvesting
Using Nanowires? Adv. Mater 20, 4021–4026 (2008).
10. Z. L. Wang, Energy Harvesting Using Piezoelectric Nanowires–A Correspondence on ‘‘Energy Harvesting UsingNanowires? ‘‘ by Alexe et al. Adv. Mater.20, 1–5 (2008).
11. F. R. Fana, Z.Q. Tian, Z. L. Wang, Flexible triboelectric generator! Nano Energy 1, 328–334 (2012).
12. L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen Z. L. Wang, Triboelectric
Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection
and Tactile Imaging. ACS Nano 7, 8266–8274 (2013).
13. S. Wang, Z. L. Wang, Y. Yang, A One-Structure-Based Hybridized
Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects. Advanced materials 15, 2881-2887 (2016)
14. J. Chang. M. Dommer. C. Chang. L.W. Lin, Piezoelectric nanofibers for energy
scavenging applications Nano Energy 1, 356-371 (2012).
15. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo D. Pisignano, Y. Huang, J. A. Roger, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications 4, 1633 (2013).
16. Y. Mao, S. Banerjee, S. S. Wong, Large-Scale Synthesis of ,Single-Crystalline Perovskite Nanostructures. J. Am. Chem. Soc. 125, 15718–15719 (2003).
17. H. Deng, Y.Qiu and S. Yang, General surfactant-free synthesis of MTiO3 (M ¼ Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem 19, 976-982 (2009).
18. B. Li, W. Shang, Z. L. Hu, N. Q. Zhang, Template-free fabrication of pure single-crystalline BaTiO3 nano-wires by molten salt synthesis technique. Ceramics International 40, 73–80 (2014)
19. N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, A. Gupta, Shape-Controlled Monocrystalline Ferroelectric Barium Titanate Nanostructures: From Nanotubes and Nanowires to Ordered Nanostructures. J. Phys. Chem. C 112, 8634–8642 (2008).
20. Z. H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang, BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. J. Phys. Chem. Lett. 3, 3599−3604 (2012).
21. Y.F. Zhu, L. Zhang, T.Natsuki, Y.Q. Fu, Q.Q. Ni, Facile Synthesis of BaTiO3 Nanotubes and Their Microwave Absorption Properties. ACS Appl. Mater. Interfaces 4, 2101−2106 (2012).
22. F. Maxim, P. Ferreira, P. M. Vilarinho, I. Reaney Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors. Crystal Growth & Design 8, 2008.
23. T. Yoko, K. Kamiya, K. Tanaka, Preparation of multiple oxide BaTiO3 fibres by the sol-gel method. Journal Of Materials Science 28, 3922-3929 (1990).
24. J. Yuh, J. C. Nino, W. M. Sigmund, Synthesis of barium titanate (BaTiO3)
nanofibers via electrospinning. Materials Letters 59, 3645 – 3647 (2005).
25. B. Sahoo, P. K. Panda, Preparation and characterization of barium titanatenanofibers by electrospinning. Ceramics International 38, 5189–5193 (2012).
26. H. Li, H. Wu, D. Lin, W. Pan, High Tc in Electrospun BaTiO3 Nanofibers. J. Am. Ceram. Soc 92, 2162–2164 (2009).
27. F. Wang, Y.W. Mai, D. Wang, R. Ding, W. Shi, High quality barium titanate
nanofibers for flexible piezoelectric device applications.
28. N. Bhardwaj, S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28, 325–347 (2010).
29. S. G. Taylor, Disintegration of Water Droplets in an Electric Field. Proceedings of the Royal Society A. 280, 383 (1964).
30. S. Zargham, S. Bazgir, A. Tavakoli, A.S. Rashidi, R. Damerchely, The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics 7, 42–49 (2012).
31. C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, Study on morphology of electrospun poly (vinyl alcohol) mats. Eur Polym J 41, 423–432 (2005).
32. C. J.Buchko, L. C.Chen, Y.Shen, D. C.Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40, 7397–7407(1999).
33. M. Erenciaa , F. Canoa , J.A. Torneroa , M. M. Fernandesb, T. Tzanovb , J.Macanásc , F.Carrilloa, Electrospinning of gelatin fibers using solutions with low acetic acid concentration: effect of solvent composition on both diameter of electrospun fibers and cytotoxicity, Applied Polymer science 132, 2–11 (2015).
34. X. Zong, ,K. Kim, Fang, S. Ran, B. S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43, 4403-4412 (2002)
35. S. Chuangchote, T. Sagawa, S. Yoshikawa, Electrospinning of Poly(vinyl pyrrolidone): Effects of Solvents on Electrospinnability for the Fabrication of Poly (p-phenylene vinylene) and TiO2Nanofibers. Journal of Applied Polymer Science 114, 2777–2791(2009).
36. A. Abutaleb, D. Lolla, A.Aljuhani, H.U. Shin, J. W. Rajala, G.G. Chase, Effects of Surfactants on the Morphology and Properties of Electrospun Polyetherimide Fibers. Fibers 5, 33 (2017).
37. S. Liu, S. Xue, W.Zhang, J. Zhai, Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites. Ceramics International 40, 15633–15640 (2014).
38. G. Wang, X. Huang, P. Jiang, Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High‑k Nanowires. ACS Appl. Mater. Interfaces 7, 18017−18027 (2015).
39. H. Liu, S. Luo, S.Yu, S Ding, R Sun a, C.P.Wong, Enhanced Dielectric Property and Energy Density of Polydopamine Encapsuled BaTiO3 Nanofibers/PVDF Nanocomposites. 2016 17th International Conference on Electronic Packaging Technology 492−498(2016).
40. C. C. Li, S. J. Chang, J. T. Leec, W. S. Liao, Efficient hydroxylation of BaTiO3 nanoparticles by using hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 361, 143–149 (2010).
41. J. Fang, X. Wang and T. Lin, Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Che 21, 11088–11091 (2011).
42. C. Chang, Y. K. Fuh, L. W. Lin, A DIRECT-WRITE PIEZOELECTRIC PVDF NANOGENERATOR Nano Lett 10, 726–731 (2010).
43. B. J. Hansen, Y.Liu, R. Yang, Z. L. Wang, Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy. ACS Nano 4, 647–3652 (2010).
44. J. Kim, J. H. Lee, H. Ryu, J. H. Lee, U. Khan, H. Kim, S. S.Kwak, S. W. Kim,
High‐Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment. Adv. Funct. Mater 27, 1700702 (2017).
45. K. Shi , B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet
and BaTiO3 nanoparticles onperformance enhancement of electrospun PVDF
nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy
52, 153–162 (2018).
46. J. N. Pereira, V. Sencadas, V.Correia, J. G. Rocha, S. L. Méndez, Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites Sensors and Actuators A: Physical 196, 55–62 (2013).
47. M. S. S. Bafqi, R. Bagherzadeh, M. Latif, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22, 130–138 (2015).
48. X. Lu, H. Qu, M. Skorobogatiy, Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms. Scientific Reports 7, (2017).
49. X. Zhanga, Y. Maa, C. Zhaoa, W. Yanga, High dielectric constant and low dielectric loss hybridnanocomposites fabricated with ferroelectric polymer matrix andBaTiO3nanofibers modified with perfluoroalkylsilane. Applied Surface Science 305, 531–538 (2014).
50. K. K. Koo, U. Y. Hwang, H. S. Park, Low-Temperature Synthesis of Fully Crystallized Spherical BaTiO3Particles by the Gel–Sol Method. J. Am. Ceram. Soc 87, 2168 –2174 (2004).
51. W. Jiang, C. Jiang , X. L. Gong, Z. Zhang, Structure and electrorheological
properties of nanoporous BaTiO3 crystalline powders prepared by sol–gel method. J Sol-Gel Sci Technol 52, 8–14 (2009).
52. Y. Fan, X. Huang, G. Wang, P. Jiang, Core−Shell Structured
Biopolymer@BaTiO3 Nanoparticles for Biopolymer Nanocomposites with
Significantly Enhanced Dielectric Properties and Energy Storage Capability.
J. Phys. Chem. C 119, 27330−27339 (2015).
53. A. Salimi, A. A.Yousefi, Analysis Method: FTIR studies of β-phase crystal
formation in stretched PVDF films. Polymer Testing 22, 699-704 (2003). |