參考文獻 |
[1] Touch Display Research Inc., ITO-replacement report, May 2015 & non ITO transparent conductor technologies, supply chain and market forecast report, 2013, 2014, 2015 and 2016.
[2] Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56.
[3] Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. nature, 363(6430), 603.
[4] Geng, H. Z., Kim, K. K., So, K. P., Lee, Y. S., Chang, Y., & Lee, Y. H. (2007). Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. Journal of the American Chemical Society, 129(25), 7758-7759.
[5] Cho, D. Y., Eun, K., Choa, S. H., & Kim, H. K. (2014). Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon, 66, 530-538.
[6] Kim, J. H., Ko, E., Hwang, J., Pham, X. H., Lee, J. H., Lee, S. H., ... & Han, K. N. (2015). Large-scale plasma patterning of transparent graphene electrode on flexible substrates. Langmuir, 31(9), 2914-2921.
[7] Zou, J., Li, C. Z., Chang, C. Y., Yip, H. L., & Jen, A. K. Y. (2014). Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells. Advanced Materials, 26(22), 3618-3623.
[8] Liang, J., Li, L., Tong, K., Ren, Z., Hu, W., Niu, X., ... & Pei, Q. (2014). Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS nano, 8(2), 1590-1600.
[9] Wang, R., & Ruan, H. (2016). Synthesis of copper nanowires and its application to flexible transparent electrode. Journal of Alloys and Compounds, 656, 936-943.
[10] Layani, M., Grouchko, M., Shemesh, S., & Magdassi, S. (2012). Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. Journal of Materials Chemistry, 22(29), 14349-14352.
[11] Finn, D. J., Lotya, M., & Coleman, J. N. (2015). Inkjet printing of silver nanowire networks. ACS applied materials & interfaces, 7(17), 9254-9261.
[12] Maurer, J. H., González-García, L., Reiser, B., Kanelidis, I., & Kraus, T. (2016). Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano letters, 16(5), 2921-2925.
[13] Kwon, J., Cho, H., Eom, H., Lee, H., Suh, Y. D., Moon, H., ... & Ko, S. H. (2016). Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS applied materials & interfaces, 8(18), 11575-11582.
[14] Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., Kwon, J., ... & Ko, S. H. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS nano, 7(6), 5024-5031.
[15] Qi, L., Li, J., Zhu, C., Yang, Y., Zhao, S., & Song, W. (2016). Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device. RSC Advances, 6(16), 13531-13536.
[16] Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel?. Advanced materials, 16(14), 1151-1170.
[17] Zhao, W., Nugay, I. I., Yalcin, B., & Cakmak, M. (2016). Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: In-plane anisotropic conductivity for electro-optical applications. Displays, 45, 48-57.
[18] Singh, S. B., Hu, Y., Kshetri, T., Kim, N. H., & Lee, J. H. (2017). An embedded-PVA@ Ag nanofiber network for ultra-smooth, high performance transparent conducting electrodes. Journal of Materials Chemistry C, 5(17), 4198-4205.
[19] Wu, H., Hu, L., Rowell, M. W., Kong, D., Cha, J. J., McDonough, J. R., ... & Cui, Y. (2010). Electrospun metal nanofiber webs as high-performance transparent electrode. Nano letters, 10(10), 4242-4248.
[20] An, S., Jo, H. S., Kim, D. Y., Lee, H. J., Ju, B. K., Al‐Deyab, S. S., ... & Yoon, S. S. (2016). Self‐Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. Advanced Materials, 28(33), 7149-7154.
[21] Honma, H., & Kobayashi, T. (1994). Electroless copper deposition process using glyoxylic acid as a reducing agent. Journal of the Electrochemical Society, 141(3), 730-733.
[22] Shu, J., Grandjean, B. P. A., & Kaliaguine, S. (1997). Effect of Cu (OH) 2 on electroless copper plating. Industrial & engineering chemistry research, 36(5), 1632-1636.
[23] Li, J., Hayden, H., & Kohl, P. A. (2004). The influence of 2, 2′-dipyridyl on non-formaldehyde electroless copper plating. Electrochimica Acta, 49(11), 1789-1795.
[24] Oita, M., Matsuoka, M., & Iwakura, C. (1997). Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl. Electrochimica Acta, 42(9), 1435-1440.
[25] Gan, X., Wu, Y., Liu, L., Shen, B., & Hu, W. (2007). Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surface and Coatings Technology, 201(16-17), 7018-7023.
[26] Hsu, P. C., Kong, D., Wang, S., Wang, H., Welch, A. J., Wu, H., & Cui, Y. (2014). Electrolessly deposited electrospun metal nanowire transparent electrodes. Journal of the American Chemical Society, 136(30), 10593-10596.
[27] Hsu, H. H., Yeh, J. W., & Lin, S. J. (2003). Repeated 3D nucleation in electroless Cu deposition and the grain boundary structure involved. Journal of The Electrochemical Society, 150(11), C813-C815.
[28] Kim, G. H., Shin, J. H., An, T., & Lim, G. (2018). Junction-free Flat Copper Nanofiber Network-based Transparent Heater with High Transparency, High Conductivity, and High Temperature. Scientific reports, 8(1), 13581.
[29] Song, R., Li, X., Gu, F., Fei, L., Ma, Q., & Chai, Y. (2016). An ultra-long and low junction-resistance Ag transparent electrode by electrospun nanofibers. RSC advances, 6(94), 91641-91648.
[30] Yang, X., Hu, X., Wang, Q., Xiong, J., Yang, H., Meng, X., ... & Chen, Y. (2017). Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template. ACS applied materials & interfaces, 9(31), 26468-26475.
[31] Havrlík, M., & Ryparová, P. (2017). The Dependence of Concentration Copper Ions in Nanofibers (PVA) on Composition of Original Basic Electrospin Solution and on Kind of Stabilization. In Key Engineering Materials (Vol. 731, pp. 23-28). Trans Tech Publications.
[32] Abargues, R., Marqués-Hueso, J., Canet-Ferrer, J., Pedrueza, E., Valdés, J. L., Jiménez, E., & Martínez-Pastor, J. P. (2008). High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics. Nanotechnology, 19(35), 355308.
[33] Yen, C. C., Chang, T. C., & Kakinoki, H. (1990). Studies on the preparation and properties of conductive polymer. I. Novel method to prepare metalized plastic from metal chelate of poly (vinyl alcohol). Journal of applied polymer science, 40(1‐2), 53-66.
[34] Liang, K. L., Wang, Y. C., Lin, W. L., & Lin, J. J. (2014). Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity. RSC Advances, 4(29), 15098-15103.
[35] Testa, A., Bernasconi, R., Yoshikawa, R., Takenaka, I., Magagnin, L., & Shiratori, S. (2017). Transparent flexible electrodes based on junctionless copper nanowire network via selective electroless metallization of electrospun nanofibers. Journal of The Electrochemical Society, 164(12), D764-D770.
[36] Haacke, G. (1976). New figure of merit for transparent conductors. Journal of Applied Physics, 47(9), 4086-4089.
[37] Im, H. G., Jung, S. H., Jin, J., Lee, D., Lee, J., Lee, D., ... & Bae, B. S. (2014). Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS nano, 8(10), 10973-10979.
[38] Alzoubi, K., Hamasha, M. M., Lu, S., & Sammakia, B. (2011). Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 7(11), 593-600.
[39] An, S., Kim, Y. I., Jo, H. S., Kim, M. W., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2018). Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Materialia, 143, 174-180.
[40] Wu, H., Kong, D., Ruan, Z., Hsu, P. C., Wang, S., Yu, Z., ... & Cui, Y. (2013). A transparent electrode based on a metal nanotrough network. Nature nanotechnology, 8(6), 421.
[41] Ghosh, D. S., Chen, T. L., Mkhitaryan, V., & Pruneri, V. (2014). Ultrathin transparent conductive polyimide foil embedding silver nanowires. ACS applied materials & interfaces, 6(23), 20943-20948.
[42] Yuan, C. G., Guo, S., Song, J., Huo, C., Li, Y., Gui, B., & Zhang, X. (2017). One-step fabrication and characterization of a poly (vinyl alcohol)/silver hybrid nanofiber mat by electrospinning for multifunctional applications. RSC Advances, 7(8), 4830-4839.
[43] Mbhele, Z. H., Salemane, M. G., Van Sittert, C. G. C. E., Nedeljković, J. M., Djoković, V., & Luyt, A. S. (2003). Fabrication and characterization of silver− polyvinyl alcohol nanocomposites. Chemistry of Materials, 15(26), 5019-5024.
[44] Darling, S. B., & Hoffmann, A. (2007). Tuning metal surface diffusion on diblock copolymer films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(4), 1048-1051.
[45] Kovacs, G. J., & Vincett, P. S. (1982). Formation and thermodynamic stability of a novel class of useful materials: Close-packed monolayers of submicron monodisperse spheres just below a polymer surface. Journal of Colloid and Interface Science, 90(2), 335-351.
[46] Heo, J. H., Shin, D. H., Kim, S., Jang, M. H., Lee, M. H., Seo, S. W., ... & Im, S. H. (2017). Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes. Chemical Engineering Journal, 323, 153-159.
[47] Ali, A. H., Shuhaimi, A., & Hassan, Z. (2014). Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes. Applied Surface Science, 288, 599-603. |