博碩士論文 105327601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:3.15.15.160
姓名 托克(Toko Sugiharto)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 Wireless-IMU Based Gait Parameters Characterization for Objectively Assessing Stroke Patients Disability
(Wireless-IMU Based Gait Parameters Characterization for Objectively Assessing Stroke Patients Disability)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為了客觀評估中風病患之步態參數,進而發展無線慣性穿戴裝置。研究中使用四顆慣性量測單元(IMU)及藍芽傳輸模組達成訊號之擷取與傳送,並以Madgwick演算法估測每個IMU的歐拉角(Eular angle)。為了驗證歐拉角之估測演算法正確性,故採用開發4-IMU量測裝置重建手臂機器人ABB IRB120的動作軌跡,與所設定軌跡比較驗證。
每個IMU的歐拉角,用來計算穿戴者的步態參數。四顆IMU分別置於穿戴者的後骨盆處、大腿外側、小腿外側及腳背處。步態參數包含步態速度(m/min)、步態頻率(step/min)、步幅、股盆關節旋轉量、臂部、膝蓋及腳踝處之屈角度、臂部及大腿之內旋量、腳之內彎角度、腳之內翻外翻程度、步態之擺動幅度角等,這些參數都是評估中風病患行走能力重要的指標。為了驗證步態參數之正確性,將健康人的6公尺步行測試步態參數與研究結果進行比較。
在研究中,此裝置已使用於四名中風患者,收集每名患者6公尺步行測試下肢之慣性數據。實驗因病患為期60到120天,間隔至少兩週進行一次實驗。實驗結果呈現病患行走能力的客觀參數顯示於這段時間的進步變化。研究中個別病患亦進行Brunnstrom stage主觀評估。
摘要(英) The purpose of this study is developing a wireless inertial sensing system for objectively assessing gait parameters of stroke patients. In this study, we employ four inertial measurement units (IMU) and Bluetooth wireless transmission module to acquire IMU signals wirelessly. Then, we used Madgwick′s algorithm to estimate Euler angle of each IMU. As the verification of Euler angle estimation algorithm, we employ developed devices to reconstruct trajectory motions of arm robot ABB IRB120 and comparing IMU’s trajectory with the robot’s trajectory.
After obtaining the Euler angle of each IMU device, the Euler angle was used to calculate gait parameters. Four IMUs were installed at the lower limb organ, those are back pelvic, outside thigh, outside calf, and on the feet. Parameters that could be calculated are gait speed (m/min), cadence (step/min), step length, pelvic rotation, flexion angle of hip, knee, and ankle, internal rotation of hip and leg, foot progression angle, over-pronation and percentage of stance/swing phase. These parameters are important enough to assess the improvement of stroke patients. As the verification of gait parameters calculation, we calculated gait parameters of healthy people and comparing the results with the others study.
In the experiment, this system was used to monitor 4 stroke patients. Every patient has collected his lower limb inertial data at least 2 months with intervals at least 2 weeks. The results showed the walking ability of the patients and improvement of patients during the range time of data collection. To verify the objective results of parameters estimation from this research, we verified the results with the subjective assessment (Brunnstrom stage) from the clinic. A patient who had higher Brunnstrom stage score had a walking ability more than others objectively from the estimated parameters.
關鍵字(中) ★ 無線慣性穿戴裝置
★ 歐拉角
★ 軌跡重建
★ 步態參數
關鍵字(英) ★ wireless inertial sensing system
★ Euler angle
★ trajectory reconstruction
★ gait parameters
論文目次 摘要 i
Abstract ii
Acknowledgments iii
Contents iv
List of Figure vi
List of Table viii
Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Literature Survey 1
1-3 Framework of the Thesis 3
Chapter 2 Theoretical Basis 4
2-1 Attitude Representation 4
2-2 Gradient Descent 8
2-3 Fourier Analysis 9
Chapter 3 Wireless Inertial Measurement Units 10
3-1 Inertial Measurement Units 10
3-2 Common Error Models of an IMU 13
3-3 Serial Bluetooth Communication System 15
Chapter 4 Implementation of Measurement System 17
4-1 Device Employed IMUs 17
4-2 SparkFun Bluetooth Modem - BlueSMiRF Silver 19
4-3 Inertial Measurement Device 19
4-4 User Interface 20
4-5 Device Calibration 20
4-6 Algorithm 23
4-7 Validation 28
Chapter 5 Experimental Design 36
5-1 Experimental Protocol 36
5-2 Gait Characterization Parameters 37
Chapter 6 Experimental Result and Discussion 43
6-1 Gait Analysis of Healthy People 43
6-2 Patients Improvement Monitoring 48
6-3 Discussion 53
Chapter 7 Conclusions and Future Work 55
References 56
Appendix A 62
Appendix B 63
Appendix C 66
Appendix D 67
Appendix E 68
參考文獻 [1] J. Collins, J. Warren, M. Ma, R. Proffitt, and M. Skubic, “Stroke Patient Daily Activity Observation System,” Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 844–848, 2017.
[2] I. Khoo, P. Marayong, V. Krishnan, M. N. Balagtas, and O. Rojas, “Design of a Biofeedback Device for Gait Rehabilitation in Post - Stroke Patients,” Proceedings of IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4, 2015.
[3] S. Qiu, Z. Wang, H. Zhao, L. Liu, and Y. Jiang, “Using Body-Worn Sensors for Preliminary Rehabilitation Assessment in Stroke Victims with Gait Impairment,” IEEE Access, vol. 6, no. 1, pp. 31249–31258, 2018.
[4] L. Yu, J. Wang, L. Guo, Q. Zhang, and P. Li, “Transfer Learning Based Quantitative Assessment Model of Upper Limb Movement Ability for Stroke Survivors,” Proceedings of IEEE 2nd International Conference on Information Technology (INCIT), pp. 1–4, 2017.
[5] M. Ye, C. Yang, V. Stankovic, L. Stankovic, and A. Kerr, “A Depth Camera Motion Analysis Framework for Tele-rehabilitation: Motion Capture and Person-Centric Kinematics Analysis,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 5, pp. 877–887, 2016.
[6] M. Ye, C. Yang, V. Stankovic, L. Stankovic, and A. Kerr, “Gait analysis Using a Single Depth Camera,” Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 285–289, 2015.
[7] K. Ge, H. Hu, J. Feng, and J. Zhou, “Depth estimation using a sliding camera,” IEEE Transactions on Image Processing, vol. 25, no. 2, pp. 726–739, 2016.
[8] O. S. Eyobu, Y. W. Kim, D. Cha, and D. S. Han, “A Real-Time Sleeping Position Recognition System Using IMU Sensor Motion Data,” Proceedings of IEEE International Conference on Consumer Electronics (ICCE), pp. 6–7, 2018.
[9] N. Vishnoi, A. Mitra, Z. Duric, and N. L. Gerber, “Motion Based Markerless Gait Analysis Using Standard Events of Gait and Ensemble Kalman Filtering,” Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2512–2516, 2014.
[10] W. Kim and Y. Kim, “Human Body Model Using Multiple Depth Camera for Gait Analysis,” Proceedings of IEEE 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 70–75, 2018.
[11] H. Zhao, Z. Wang, S. Qiu, Y. Shen, and J. Wang, “IMU-based Gait Analysis for Rehabilitation Assessment of Patients with Gait Disorders,” Proceedings of 4th International Conference on Systems and Informatics (ICSAI), pp. 622–626, 2018.
[12] H. Kim, Y. Kang, D. R. Valencia, and D. Kim, “An Integrated System for Gait Analysis Using FSRs and an IMU,” Proceedings of 2018 2nd IEEE International Conference on Robotic Computing (IRC), pp. 347–351, 2018.
[13] G. Gao, M. Kyrarini, M. Razavi, X. Wang, and A. Graser, “Comparison of Dynamic Vision Sensor-Based and IMU-based Systems for Ankle Joint Angle Gait Analysis,” Proceedings of 2nd International Conference on Frontiers of Signal Processing (ICFSP), pp. 93–98, 2016.
[14] N. Margiotta, G. Avitabile, and G. Coviello, “A Wearable Wireless System for Gait Analysis for Early Diagnosis of Alzheimer and Parkinson Disease,” Proceedings of IEEE 5th International Conference on Electronic Devices, Systems, and Applications, pp. 3–6, 2016.
[15] S. Madgwick, A. Harrison, and A. Vaidyanathan, “Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm,” Proceedings of 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–7, 2011.
[16] M. Jafari, “Quaternions Algebra and Its Applications : An Overview,” International Journal of Theoretical and Applied Mathematics, vol. 2, no. 2, pp. 79–85, 2016.
[17] L. Beran, P. Chmelar, and M. Dobrovolny, “Navigation of Robotic Platform with Using Inertial Measurement Unit and Direct Cosine Matrix,” Proceedings of 56th International Symposium Electronics in Marine (ELMAR), pp. 87–90, 2014.
[18] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms, vol. 9781107057. New York: Cambridge University Press, 2014.
[19] V. Kempe, Inertial MEMS. Principles and Practice. New York: Cambridge University Press, 2011.
[20] M. S. Grewal, L. R. Weill, and A. P. Andrew, Global Positioning System, Inertial Navigation and Integration, 2nd ed. Wiley-Interscience, 2007.
[21] M. Verma, S. Singh, and B. Kaur, “An Overview of Bluetooth Technology and its Communication Applications,” International Journal of Current Engineering and Technology, vol. 5, no. 5, pp. 2277–4106, 2015.
[22] V. Tsira and G. Nandi, “Bluetooth Technology : Security Issues and Its Prevention,” International Journal of Computer Applications in Technology, vol. 5, no. 5, pp. 1833–1837, 2014.
[23] Z. J. Huang and M. C. Pan, “Study of Wireless Inertial Sensing System and Limb Motion Trajectory Reconstruction,” Master Thesis, National Central University, 2015.
[24] Michael W. Whittle, Gait analysis an Introduction, 4th ed. Chattanooga: Heidi Harrison, 2007.
[25] W. E. Ichinose, D. J. Reinkensmeyer, D. Aoyagi, J. T. Lin, and K. Ngai, “A Robotic Device for Measuring and Controlling Pelvic Motion During Locomotor Rehabilitation,” Proceedings of 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1690–1693, 2004.
[26] C. D. Taylor, “Anatomical Terminology,” National Institutes of Health, 2008. [Online]. https://training.seer.cancer.gov/anatomy/body/terminology.html. [Accessed: 25-Dec-2018].
[27] T. Watanabe, Y. Kobayashi, and M. G. Fujie, “Pelvic motion analysis for gait phase estimation during gait training with body weight support,” Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 3219–3223, 2011.
[28] S. J. Kim, Y. K. Shin, G. E. Yoo, H. J. Chong, and S. R. Cho, “Changes in Gait Patterns Induced BY Rhythmic Auditory Stimulation for Adolescents with Acquired Brain Injury,” Annals of the New York Academy of Sciences, vol. 1385, no. 1, pp. 53–62, 2016.
[29] R. T. Yunardi, A. A. Firdaus, E. I. Agustin, and Pujiyanto, “Implementation of Motion Capture System for Trajectory Planning of Leg Swing Simulator,” Proceedings of International Seminar on Sensor, Instrumentation, Measurement and Metrology (ISSIMM), pp. 11–16, 2017.
[30] R. Ma, J. Li, S. Jin, S. Guo, K. Hashimoto, and S. Dai, “A Speed-Independent Feedback Index for Walking Pattern Recognition For A Walking Assistive Robotic,” Proceedings of 2017 IEEE 8th International Conference on Cybernetics and Intelligent Systems (CIS) and Automation and Mechatronics (RAM), pp. 514–517, 2017.
[31] T. P. Luu, K. H. Low, X. Qu, H. B. Lim, and K. H. Hoon, “Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 2, pp. 1–9, 2014.
[32] D. T. O’Keeffe, D. H. Gates, and P. Bonato, “A Wearable Pelvic Sensor Design for Drop Foot Treatment in Post-Stroke Patients,” Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 1820–1823, 2007.
[33] M. Hora, L. Soumar, H. Pontzer, and V. Sládek, “Body Size and Lower Limb Posture During Walking in Humans,” PLoS ONE, vol. 12, no. 2, pp. 1–26, 2017.
[34] C. Ossendorf, L. Bohnert, N. Mamisch-Saupe, D. Rittirsch, and G. A. Wanner, “Is the Internal Rotation Lag Sign a Sensitive Test for Detecting Hip Abductor Tendon Ruptures after Total Hip Arthroplasty?,” Patient Safety in Surgery, vol. 5, no. 4, pp. 1–4, 2011.
[35] S. N. Kubinski, C. A. McQueen, K. A. Sittloh, and and J. C. Dean, “Walking with Wider Steps Increases Stance Phase Gluteus Medius Activity,” Gait Posture, vol. 41, no. 1, pp. 130–135, 2016.
[36] L. C. Smith and B. Hanley, “Comparisons between swing phase characteristics of race walkers and distance runners,” International Journal of Exercise Science, vol. 6, no. 4, pp. 269–277, 2013.
[37] S. Bakhshi, S. Member, M. H. Mahoor, and S. Bradley, “Development of a Body Joint Angle Measurement System Using IMU Sensors,” Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6923–6926, 2011.
[38] F. Hoflinger, L. Reindl, and W. Burgard, “A Wireless Micro Inertial Measurement Unit ( IMU ),” Proceedings of IEEE Transactions on Instrumentation and Measurement, pp. 1–6, 2012.
[39] D. Rodríguez-martín, C. Pérez-lópez, A. Samà, and J. Cabestany, “A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area,” Sensors (Basel), vol. 13, no. 10, pp. 14079–14104, 2013.
[40] B. Sijobert, C. A. Coste, J. Denys, and C. Geny, “IMU Based Detection of Freezing of Gait and Festination in Parkinson’s Disease,” Proceeding of 2014 IEEE 19th International Functional Electrical Stimulation Society Annual Conference (IFESS), pp. 1–3, 2014.
[41] J. Hou, R. Ji, C. Qin, Y. Yang, C. Wang, and Z. Wang, “A System for Human Gait Analysis Based on Body Sensor Network,” Proceeding of 2014 International Conference on Wireless Communication and Sensor Network, pp. 343–347, 2014.
[42] T. Seel, J. Raisch, and T. Schauer, “IMU-Based Joint Angle Measurement for Gait Analysis,” Sensors (Basel), vol. 14, no. 4, pp. 6891–6909, 2014.
[43] K. Moran and D. Moran, “Inertial Measurement Units (IMUs) in Drowning Prevention : an Exploratory Study,” International Journal of Aquatic Research and Education, vol. 9, no. 3, pp. 257–272, 2015.
[44] E. Papi, D. Osei-kuffour, Y. A. Chen, and A. H. Mcgregor, “Use of wearable technology for performance assessment : a Validation study,” Medical Engineering and Physics, vol. 37, no. 7, pp. 698–704, 2015.
[45] S. Zihajehzadeh and E. J. Park, “Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor,” PLoS ONE, vol. 11, no. 10, pp. 1–16, 2016.
[46] P. Aqueveque, S. Sobarzo, F. Saavedra, C. Maldonado, and B. Gómez, “Android platform for realtime gait tracking using inertial measurement units,” European Journal of Translational Myology, vol. 26, no. 3, pp. 262–267, 2016.
[47] X. Wang, D. Ristić, M. Spranger, and A. Grä, “Gait Assessment System Based on Novel Gait Variability Measures,” Proceeding of 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 467–472, 2017.
[48] J. Guo, J. Du, and D. Xu, “Navigation and Positioning System Applied in Underground Driverless Vehicle Based on IMU,” Proceedings of 2018 International Conference on Robots & Intelligent System (ICRIS), pp. 13–16, 2018.
[49] C. Caramia et al., “IMU-Based Classification of Parkinson’s Disease From Gait : a Sensitivity Analysis on Sensor Location and Feature Selection,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 6, pp. 1765–1774, 2018.
[50] K. Kadir, M. M. Billah, and Z. M. Yusof, “Wireless IMU : A Wearable Smart Sensor for Disability Rehabilitation Training,” Proceeding of 2018 2nd International Conference on Smart Sensors and Application (ICSSA) Wireless, pp. 53–57, 2018.
[51] A. Cesareo, Y. Previtali, E. Biffi, and A. Aliverti, “Assessment of Breathing Parameters Using an Inertial Measurement Unit (IMU)-Based System,” Sensors (Basel), vol. 19, no. 1, pp. 1–24, 2019.
[52] Y. Wang, X. Li, and J. Zou, “A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint,” Sensors (Basel), vol. 18, no. 3, pp. 741–767, 2018.
[53] B. Shing, L. I. Jung, P. Ying, C. Shih, Y. Huang, and C. Wei, “A Modular Data Glove System for Finger and Hand Motion Capture Based on Inertial Sensors,” Journal of Medical and Biological Engineering, pp. 1–9, 2018.
[54] V. Senyurek, M. Imtiaz, P. Belsare, S. Tiffany, and E. Sazonov, “Cigarette Smoking Detection with A n Inertial Sensor and a Smart Lighter,” Sensors (Basel), vol. 19, no. 3, pp. 570–587, 2019.
[55] S. Hellmers et al., “Measurement of the Chair Rise Performance of Older People Based on Force Plates and IMUs,” Sensors (Basel), vol. 19, no. 6, pp. 1370–1391, 2019.
[56] R. Kianifar, V. Joukov, A. Lee, S. Raina, and D. Kulic, “Inertial measurement unit-based pose estimation : Analyzing and reducing sensitivity to sensor placement and body measures,” Journal of Rehabilitation and Assistive Technologies Engineering, vol. 6, no. 1, pp. 1–12, 2019.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2019-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明