參考文獻 |
1. OECD/IEA. Electricity and Heat for 2015. 2015; Available from: http://www.iea.org/statistics/statisticssearch/report/?year=2015&country=WORLD&product=ElectricityandHeat.
2. Singer, J.G., Combustion fossil power. Combustion Engineering Inc., Windsor, CT, 1991.
3. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 101-110.
4. 勢動科技. 常見的熱電材料有哪些?. Available from: http://www.acttr.com/tw/tw-faq/tw-faq-thermal-analysis/248-tw-faq-common-thermoelectric-materials.html.
5. Kraemer, D., et al., High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature materials, 2011. 10(7): p. 532.
6. Thermoelectric effect. Available from: https://zh.scribd.com/document/255525454/Thermo-Electric-Effect#.
7. Bhandari, C. and D.M. Rowe, CRC Handbook of thermoelectrics. CRC Press, Boca Raton, FL, 1995: p. 49.
8. Thomson effect. Available from: https://www.britannica.com/science/Thomson-effect.
9. Mahan, G. and B. Sales, Thermoelectric materials: New approaches to an old problem. Physics today, 1997. 50(3): p. 42-47.
10. Ioffe, A.F., et al., Semiconductor thermoelements and thermoelectric cooling. Physics Today, 1959. 12: p. 42.
11. Goldsmid, H. and R. Douglas, The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954. 5(11): p. 386.
12. Chandler, D.L., Explained: Phonons. 2010.
13. Thomson effect and Thomson coefficient (σ). Available from: http://www.brainkart.com/article/Thomson-effect-and-Thomson-coefficient----963--_547/.
14. Boukai, A.I., et al., Silicon nanowires as efficient thermoelectric materials, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 116-119.
15. Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451: p. 163.
16. Li, Y., et al. Silicon nanowires thermoelectric devices. in 2010 Conference Proceedings IPEC. 2010.
17. Kim, K. and C. Baek. Silicon nanowire based thermoelectric device for energy harvesting. in 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). 2017.
18. Xu, B., W. Khouri, and K. Fobelets, Two-Sided Silicon Nanowire Array/Bulk Thermoelectric Power Generator. IEEE Electron Device Letters, 2014. 35(5): p. 596-598.
19. Cheng, S.L., C.H. Chung, and H.C. Lee. Fabrication of Vertically Aligned Silicon Nanowire Arrays and Investigation on the Formation of the Nickel Silicide Nanowires. in 2007 IEEE Conference on Electron Devices and Solid-State Circuits. 2007.
20. Watanabe, T. Silicon-based micro thermoelectric generator fabricated by CMOS compatible process. in 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). 2017.
21. Tahrim, A.A., A. Ahmad, and M.S.M. Ali. Silicon nanowire arrays thermoelectric power harvester. in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). 2017.
22. 王威傑, 矽基熱電模組開發及特性研究; The Research and Development of Si-based Thermoelectric Modules. 2017, 國立中央大學.
23. Peng, K.Q., et al., Synthesis of large‐area silicon nanowire arrays via self‐assembling nanoelectrochemistry. Advanced Materials, 2002. 14(16): p. 1164-1167.
24. Bai, F., et al., Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching. Nanoscale research letters, 2012. 7(1): p. 557.
25. Nassiopoulou, A.G., V. Gianneta, and C. Katsogridakis, Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics. Nanoscale research letters, 2011. 6(1): p. 597.
26. Han, H., Z. Huang, and W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today, 2014. 9(3): p. 271-304.
27. Osminkina, L.A., et al., Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale research letters, 2012. 7(1): p. 524.
28. Ouertani, R., et al., Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method. Nanoscale research letters, 2014. 9(1): p. 574.
29. Li, S., et al., Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE. Journal of Solid State Chemistry, 2014. 213: p. 242-249.
30. To, W.-K., et al., Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano letters, 2011. 11(12): p. 5252-5258.
31. Li, S., et al., Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Research Letters, 2014. 9(1): p. 196.
32. Qu, Y., et al., Electrically conductive and optically active porous silicon nanowires. Nano letters, 2009. 9(12): p. 4539-4543.
33. Zhang, M.-L., et al., Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. The Journal of Physical Chemistry C, 2008. 112(12): p. 4444-4450.
34. Zhong, X., et al., Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS applied materials & interfaces, 2011. 3(2): p. 261-270.
35. Qi, Y., et al., A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching. The Journal of Physical Chemistry C, 2013. 117(47): p. 25090-25096.
36. Jiang, J.-S. and B.-S. Chiou, The effect of polyimide passivation on the electromigration of Cu multilayer interconnections. Journal of Materials Science: Materials in Electronics, 2001. 12(11): p. 655-659.
37. Li, Y., et al., Improved Vertical Silicon Nanowire Based Thermoelectric Power Generator With Polyimide Filling. IEEE Electron Device Letters, 2012. 33(5): p. 715-717.
38. Warren, B.E., X-ray Diffraction. 1990: Courier Corporation.
39. Liu, X.-B., L. Yu, and H. M. Wang, Synthesis of a nickel silicide-base composite coating on austenitic steel by laser cladding. Vol. 20. 2001. 1489-1492.
40. Vanderwalker, D.M., Amorphous transition phase of NiSi2. Applied Physics Letters, 1986. 48(11): p. 707-708.
41. King-Ning, T., et al., Epitaxial Growth of Nickel Silicide NiSi 2 on Silicon. Japanese Journal of Applied Physics, 1974. 13(S1): p. 669.
42. Julies, B.A., et al., A study of the NiSi to NiSi2 transition in the Ni–Si binary system11Presented at the ICMCTF ’98 Conference San Diego, CA, USA, April 1998. Thin Solid Films, 1999. 347(1): p. 201-207.
43. NOYA, A. and M.B. TAKEYAMA, Low-Temperature Formation of NiSi2 Phase in Ni/Si System. Electron. Commun. Japan, 2016. 99(9): p. 85-91.
44. NickelEtch. Available from: https://www.inrf.uci.edu/wordpress/wp-content/uploads/sop-wet-nickel-etch.pdf. |