博碩士論文 104521029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.191.111.130
姓名 徐常軒(Chang-Hsuan Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於雅可比疊代法之軟性輸出的 巨量多輸入多輸出偵測器設計
(A Design of Soft-output Massive MIMO Detector Based on Jacobi Iterative Method)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在巨量多輸入多輸出系統中,最小均方誤差(MMSE)演算法在上行信號偵測扮演著非常重要的角色因為它能夠使效能逼近最佳解並且降低複雜度(線性)。然而,演算法中的反矩陣運算複雜度會隨著使用者的增加而變得很大,硬體實現上也變得很困難。本論文提出了一個降低運算複雜度和節省硬體資源,且可平行運算的管線式架構的最小均誤差偵測器,並且加入了通道編碼和解碼器,產生軟性解調輸出來增加位元錯誤率之效能。一開始,前處理單元(PU)會先計算演算法中的格拉姆矩陣的值(Gram matrix)和匹配濾波器(Matched Filter)的輸出值,文獻中,會使用下三角(或上三角)的脈動陣列(Systolic array)來計算,利用此法的好處是運算完的格拉姆矩陣的值不需要存起來,直接灌到下一級使用,但是需要非常多的處理元件來做運算。此外,因為格拉姆矩陣為對稱矩陣,因此矩陣的右下角(或左上角)的值是不需要計算的,這樣非常浪費運算資源。本論文根據矩陣的對稱性,使需要計算的格拉姆值達到最低,大大地節省了硬體資源。接著會進入第二級來進行解碼,使用的是雅可比疊代(Jacobi iteration),因其能夠平行處理而不需要相繼處理訊號。最後再計算軟性輸出值。硬體實現上先利用 SMIMS VeriEnterprise Xilinx FPGA進行即時驗證電路功能,接著晶片實現上利用 90 nm 製成來設計晶片,晶片的核心面積為 3.34 mm^2,最高操作頻率為 327 MHZ 且動態功率消耗為 47.3 mW 。
摘要(英) The minimum-mean-square-error (MMSE) plays a significant role in the massive multiple-input-multiple-output (MIMO) system uplink signal detection. However, matrix inversion computing complexity of the MMSE algorithm increases largely when the number of users is high, and hardware implementation is difficult. This thesis proposes a reducing complexity, frugal hardware resource, parallel processing and pipelining architecture MMSE detector. The channel encoder and decoder are used to improve bit error rate by soft output value. Firstly, Preprocessing units (PU) are used to calculate Gram matrix and Matched Filter output of the algorithm. In the literature, the lower-triangular (or upper-triangular) systolic array are proposed, the benefit of this architecture is that the value of the Gram matrix don’t need to store and then output to next stage directly, but needs more processing element for computing. In addition, since gram matrix is symmetric, the value of the Gram matrix bottom right corner (or upper left corner) don’t need to be calculated, and then the computing complexity can be reduced. According to symmetric of the matrix, this thesis reduces the computation of gram matrix value which only need to compute lowest. Hence, we can save hardware resource highly. Secondly, Jacobi iteration is used to decode in the second stage because it could process in parallel instead of sequential processing signal to calculate the soft output value. Finally, this design is verified on SMIMS VeriEnterprise Xilinx FPGA, and the proposed design is implemented in 90 nm CMOS technology. The core area is 3.34 mm^2, maximum clock frequency is 327 MHz, and dynamic power consumption is 47.3 mW.
關鍵字(中) ★ 巨量多輸入多輸出系統
★ 最小均方誤差
★ 軟性輸出
★ 雅可比疊代
關鍵字(英) ★ Massive MIMO
★ MMSE
★ soft-output
★ Jacobi iteration
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 背景 1
1.2 研究動機 2
1.3 論文架構 4
第二章 巨量多輸入多輸出系統介紹 5
2.1 點對點多輸入多輸出系統 5
2.2 多用戶多輸入多輸出系統 6
2.3 巨量多輸入多輸出系統 8
2.4 通道容量 9
2.5 空間多工技術 10
2.6 空間多工線性偵測演算法 11
2.6.1 最大比率合成(Maximum Ratio Combining) 11
2.6.2 強制歸零(Zero Forcing) 12
2.6.3 最小均方誤差(Minimum Mean Square Error) 12
2.7 空間多工非線性偵測演算法 13
2.7.1 最大相似偵測法(Maximum Likelihood) 13
2.7.2 樹狀搜尋 14
2.8 偵測器解調輸出 17
2.8.1 硬性解調輸出 17
2.8.2 軟性解調輸出 18
2.8.3 比較未編碼、硬性解調與軟性解調輸出差異 19
第三章 軟性解調巨量多輸入多輸出偵測器 23
3.1 系統架構 24
3.2 Cholesky 分解與 LDL 分解 24
3.3 近似反矩陣演算法 26
3.3.1 諾伊曼級數估計(Neumann series approximation) 26
3.3.2 定常疊代法(Stationary Iterative Method) 28
3.4 高效率硬體前處理與近似反矩陣疊代演算法 32
3.5 軟性解調輸出值產生器的簡化 37
3.6 複雜度與效能分析 40
第四章 硬體架構設計 42
4.1 硬體設計規格 42
4.2 基本電路介紹 44
4.2.1 前處理電路(Preprocessing Circuit) 44
4.2.2 倒數電路(Reciprocal Circuit) 46
4.2.3 信號干擾雜訊比運算電路(SINR Circuit) 50
4.2.4 雅可比疊代(Jacobi iteration)偵測電路 51
4.2.5 軟性輸出值產生器(Soft Value Generator) 52
4.2.6 有限狀態機(FSM) 53
第五章 晶片實現 55
5.1 設計流程 55
5.2 定點數模擬分析 56
5.3 模擬驗證 57
5.4 其他文獻比較 59
第六章 結論與未來展望 60
參考文獻 61
參考文獻 [1] H. Q. Ngo, Massive MIMO: Fundamentals and System, Sweden: Linköping University, 2015.
[2] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, "Large-scale MIMO detection for 3GPP LTE: algorithms and FPGA," IEEE J. Sel. Topics in Sig. Proc., vol. 8, no. 5, p. 916–929, Oct 2014.
[3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O.Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan 2013.
[4] A. Krishnamoorthy and D. Menon, "Matrix inversion using Cholesky decomposition," in Proc. Signal Processing: Algorithms,Architectures, Arrangements, and Applications (SPA), pp. 70-72, Sept 2013.
[5] Nanda Kishore Chavali, Anvesh Reddy Yalla, "A soft-demapper for coded MIMO-OFDM system," 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 451 - 457, Nov 2014.
[6] Lu, L., Li, G.Y., Swindlehurst, A.L., et al., "An Overview of Massive MIMO: Benefits and Challenges," IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 5, p. 742–758, 10 2014.
[7] E. Perahia, R. Stacey, Next Generation Wireless LANs: Throughtput, Robustness, and Reliability in 802.11n, Cambridge University Press, Sep. 2008.
[8] E. Teletar, "Capacity of multi-antenna Gaussian channels," European Transactions Telecommunications, pp. 585-595, Dec Nov 1999.
[9] Babak Hassibi and Haris Vikalo, "On the Sphere-Decoding Algorithm I. Expected Complexity," IEEE Transaction on Signal. Proc, VOL.53,NO.8 , AUGUST 2005.
[10] M. Wenk, M. Zellweger, A. Burg, N. Felber and W. Fichtner, "K-best MIMO detection VLSI architectures achieving up to 424 Mbps," ISCAS , pp. 1151-1154, 2006.
[11] Joakim Jaldén and Björn Ottersten, "On the Complexity of Sphere Decoding in Digital Commuications," IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005.
[12] LAN/MAN Standards Committee, "IEEE Standard for Information technology –Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements.," USA, 2009 OCT.
[13] LECTURE 9, Viterbi Decoding of Convolutional, MIT 6.02 DRAFT Lecture Notes, 2010 Fall.
[14] T. MathWorks, "Communication System Toolbox".
[15] Guiqiang Peng; Leibo Liu; Sheng Zhou; Shouyi Yin; Shaojun Wei, "A 1.58 Gbps/W 0.40 Gbps/mm2 ASIC Implementation of MMSE Detection for 128 X 8 64 -QAM Massive MIMO in 65 nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers. Volume: 65, Issue: 5, MAY 2018.
[16] Xinyu Gao, Linglong Dai, Yuting Hu, Zhongxu Wang, and Zhaocheng Wang, "Matrix Inversion-Less Signal Detection Using SOR Method for Uplink Large-Scale MIMO Systems," Signal Processing for Communications Symposium, 2014.
[17] Linglong Dai, Xinyu Gao,Xinyu Gao,Zhaocheng Wang,, “Low-Complexity Soft-Output Signal Detection Based on Gauss–Seidel Method for Uplink Multiuser Large-Scale MIMO Systems,” IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 10, OCTOBER 2015.
[18] G. Stewart, Matrix Algorithms Volume I: Basic Decompositions, Society for Industrial and Applied Mathematics, 1998.
[19] Zhizhen Wu, Chuan Zhang, Ye Xue, Shugong Xu, and Xiaohu You, "Efficient Architecture for Soft-Output Massive MIMO Detection with Gauss-Seidel Method," IEEE International Symposium on Circuits and Systems (ISCAS), May 2016.
[20] Christoph Studer, Member, IEEE, Schekeb Fateh, Student Member, IEEE, and Dominik Seethaler, "ASIC Implementation of Soft-Input Soft-Output MIMO Detection Using MMSE Parallel Interference Cancellation," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 7, JULY 2011.
[21] Bei Yin, Michael Wu, Guohui Wang, Chris Dick, Joseph R. Cavallaro, and Christoph Studer, "A 3.8 Gb/s LARGE-SCALE MIMO DETECTOR FOR 3GPP LTE-ADVANCED," IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014.
[22] Yang Xue, Leibo Liu, "Hardware Efficient Signal Detector Based on Lanczos Method for Massive MIMO," IEEE International Conference on Communication Software and Networks, 2017.
[23] Oscar Castañeda, Tom Goldstein, and Christoph Studer, "Data Detection in Large Multi-Antenna Wireless Systems via Approximate Semidefinite Relaxation," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 63, NO. 12, DECEMBER 2016.
[24] B. Yin, Low complexity Detection and Precoding for Massive MIMO Systems: Algorithm, Architecture, and Application, Houston, Texas, 2014.
[25] Lin, Yu-Cheng and M.-T. Shiue, Design and Implement of Antenna-Configurable Soft-output MIMO Detector Based on Distributed K-Best Algorithm, 2017.
[26] Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang, MIMO-OFDM Wireless Communication with MATLAB, 2010.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2018-10-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明