博碩士論文 105521022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.145.111.115
姓名 林恩碩(En-Shuo Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 T型閘極氮化鋁銦(鎵)/氮化鋁/氮化鎵高電子遷移率電晶體製作與特性分析
(Fabrication and Characterization of T-gate AlIn(Ga)N/AlN/GaN High Electron Mobility Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今氮化銦鎵位障層高頻元件因具高二維電子氣且高輸出功率吸引很多團隊應用在高頻元件上。然而其仍受到介面粗糙度以及銦自聚效應等限制,因此發展四元氮化鋁銦鎵位障層,具較少的銦含量,減少銦原子的自聚效應,降低成分不均勻性,加入鎵原子可提高互容性,因此四元位障層具較佳的位障層磊晶品質。於元件結果顯示,四元氮化鋁銦鎵位障層具高能隙特性,在Lgd=2 µm、Lg= 400 nm之元件崩潰達到81 V較三元位障層57 V突出。高頻特性顯示三元與四元磊晶片fT/fmax分別為18/24.5 GHz與35.3/40.3 GHz,萃取小訊號參數發現氮化鋁銦鎵位障層具有較高本質轉導值。
為提高元件高頻操作,閘極線寬須微縮,然而將遭遇閘極寄生電阻過大使功率截止增益受限。運用T型閘極的優勢降低閘極寄生電阻與閘極寄生電容,使用三層光阻ZEP-A7/LOR/ZEP-A7開發T型閘極,當閘極線寬由400 nm微縮至160 nm時,T型閘極微影製程需較佳的身寬比才能將金屬鍍完整。元件特性部分相同Lsd下,汲極飽和電流密度由522提升至893 mA/mm,轉導由287上升至370 mS/mm。高頻特性fT/fmax由35.3/40.3提高至83/95 GHz,主要和線寬微縮時本質轉導提升以及閘極寄生電容下降有關。閘極由400 nm微縮至160 nm,因金屬截面積的提高外部閘極寄生電阻由21歐姆降至7歐姆,成功顯示T型閘極製程效果。本論文成功驗證氮化鋁銦鎵材料與T型閘極優勢,適用於高功率放大器之應用。此外吾人考慮基板寄生效應,計算後並利用ADS模擬軟體在小訊號電路上扣除,得到最後的fmax為103GHz,顯示低阻值矽基板將會影響元件高頻特性。
摘要(英) Lattice matched Al0.83In0.17N/GaN high electron mobility transistors (HEMTs) have attracted a lot of interests as an alternative to the most matured AlGaN/GaN HEMTs for high power millimeter-wave devices because of its high density two dimensional electron gas (2DEG) at the heterointerface, even with sub-10 nm barrier. However, in spite of having such advantages over its AlGaN counterparts, it suffers from In segregation, compositional inhomogeneity and high off-state leakage current. AlInGaN/GaN HEMTs recently emerges as one of the promising candidate for mm-wave power applications. It is reported to have highest miscibility after AlGaN, among all the III-nitride materials. However, many of its properties and device performances are yet to be explored before its successful commercial deployments. This thesis aims at comparing the DC and RF performances of AlInN/GaN and AlInGaN/GaN HEMTs grown on 150 mm silicon (111) substrates. Devices fabricated with Lg= 0.4 µm/Lgd= 2 µm show off-state breakdown voltage of 81V and 57V with AlInGaN and AlInN barriers respectively. Furthermore, the AlInGaN/GaN and AlInN/GaN HEMTs with the same dimensions exhibit a current gain cut-off frequency (fT) of 35.3 GHz and 18 GHz and a power gain cut-off frequency (fmax) of 40.3 GHz and 24.5 GHz respectively. Extracted small signal parameters indicate, higher intrinsic transconductance (gmi) is one of the reasons for significantly higher fT/fmax in AlInGaN barrier HEMTs.
Highly conductive T-gate with low input resistance and small footprint is desirable for devices operating at mm-wave frequency. However, it introduces additional gate parasitic capacitance, resulting lower fT. Therefore, highly optimized T-gates are needed to balance the fT/fmax ratio. A tri-layer photoresist of ZEP-A7/LOR/ZEP-A7 is developed to obtain high profile T-gates. The Idss increases from 522 mA/mm to 893 mA/mm, the transconductance increases from 287 mS/mm to 370 mS/mm and fT/fmax increase from 35.3/40.3 GHz to 83/95 GHz in AlInGaN HEMT by scalling down Lg from 0.4 µm to 0.16 µm. A reduction in parasitic gate capacitance and parasitic gate resistance from 21 ohm to 7 ohm may be attributed to the improved RF performances. This work further demonstrates that the AlInGaN/GaN HEMTs with highly optimized T-gates are excellent candidates for high power mm-wave applications. Furthermore, I consider substrate parasitic effect and remove substrate parasitic parameters by ADS simulation program. The extracted fmax is 103 GHz which indicated low resistivity silicon substrate will reduce high frequency result.
關鍵字(中) ★ 氮化鎵高電子遷移率電晶體
★ T型閘極
★ 氮化鋁銦鎵
★ 基板寄生效應
★ 電流截止增益
★ 功率截止增益
關鍵字(英) ★ GaN HEMT
★ T-gate
★ AlInGaN
★ substrate parasitic effect
★ fT
★ fmax
論文目次 目錄
論文摘要……………………………………………………………………....i
Abstract……………………………………………………………………....iii
誌謝…………………………………………………………………………..iv
目錄…………………………………………………………………………...v
圖目錄……………………………………………………………………….vii
表目錄………………………………………………………………………..xi
第一章 導論………………………………………………………….............1
1.1 前言…………………………………………………………....1
1.2 三族氮化物異質結構極化效應………………………………3
1.3 氮化鎵元件發展現況…………………………………………7
1.4 研究動機與論文架構………………………………………..12
第二章 氮化鎵異質結構場效電晶體之高頻量測………………...............14
2.1 高頻量測原理………………………………………………..14
2.2 小訊號電路模型分析………………………………………..17
2.3 小訊號參數萃取……………………………………………..19
2.4 本章總結……………………………………………………..26
第三章 T-型閘極製程開發與元件製作……………………………………27
3.1 前言…………………………………………………………..27
3.2 製程開發……………………………………………………..29
3.3 T-型閘極元件製程流程……………………………………...34
3.4 製程分析與檢視……………………………………………..42
3.5 本章總結……………………………………………………..46
第四章 AlIn(Ga)N/AlN/GaN HEMT特性分析……………………………48
4.1 前言…………………………………………………………..48
4.2 AlInN與AlInGaN HEMT直流特性分析………………….50
4.3 AlInN與AlInGaN HEMT高頻特性分析………………….54
4.4 0.16 µm閘極之AlInGaN HEMT特性分析………………..57
4.5 本章總結……………………………………………………..64
第五章 結論與未來展望…………………………………………………...66
附錄A不同位障層鋁含量之氮化鋁銦/氮化鋁/氮化鎵高電子遷移率電晶體之直流特性研究………………………………………………...…..68
A1.1 磊晶結構設計……………………………………………...68
A1.2 Hall量測、能帶模擬分析…………………………...……...71
A1.3 HEMTs蕭特基元件製作流程……………………………..74
A1.4 不同鋁含量之氮化鋁銦位障層特性分析………………...78
A1.5 本章總結…………………………………………………...86
參考文獻…………………………………………………………………….87
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
[3] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[4] J. Kuzmik, G. Pozzovivo, J. F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, et al., "Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors," physica status solidi (c), vol. 6, pp. S925-S928, 2009.
[5] K. Jena, R. Swain, and T. R. Lenka, "Impact of a drain field plate on the breakdown characteristics of AlInN/GaN MOSHEMT," Journal of the Korean Physical Society, vol. 67, pp. 1592-1596, 2015.
[6] J. Wong, K. Shinohara, A. L. Corrion, D. F. Brown, Z. Carlos, A. Williams, et al., "Novel Asymmetric Slant Field Plate Technology for High-Speed Low-Dynamic Ron E/D-mode GaN HEMTs," IEEE Electron Device Letters, vol. 38, pp. 95-98, 2017.
[7] G.-Y. Lee, "Growth, Fabrication and Characterization of AlGaN/GaN Schottky Diodes and AlInN/GaN Field-Effect Transistors," National Central University, 2015.
[8] P. Altuntas, F. Lecourt, A. Cutivet, N. Defrance, E. Okada, M. Lesecq, et al., "Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate," IEEE Electron Device Letters, vol. 36, pp. 303-305, 2015.
[9] D. Marti, S. Tirelli, A. R. Alt, J. Roberts, and C. R. Bolognesi, "150-GHz Cutoff Frequencies and 2-W/mm Output Power at 40 GHz in a Millimeter-Wave AlGaN/GaN HEMT Technology on Silicon," IEEE Electron Device Letters, vol. 33, pp. 1372-1374, 2012.
[10] D. Marti, S. Tirelli, V. Teppati, L. Lugani, J.-F. Carlin, M. Malinverni, et al., "94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon With Regrown Ohmic Contacts," IEEE Electron Device Letters, vol. 36, pp. 17-19, 2015.
[11] S. Huang, K. Wei, G. Liu, Y. Zheng, X. Wang, L. Pang, et al., "High-$f_{{
m MAX}}$ High Johnson′s Figure-of-Merit 0.2- $mu{
m m}$ Gate AlGaN/GaN HEMTs on Silicon Substrate With ${
m AlN}/{
m SiN}_{{
m x}}$ Passivation," IEEE Electron Device Letters, vol. 35, pp. 315-317, 2014.
[12] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs With InGaN Back Barrier," IEEE Electron Device Letters, vol. 32, pp. 1525-1527, 2011.
[13] K. Makiyama, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, Y. Niida, et al., "Collapse-free high power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz," pp. 9.1.1-9.1.4, 2015.
[14] S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, et al., "N-Polar Deep Recess MISHEMTs with Record 2.9 W/mm at 94 GHz," IEEE Electron Device Letters, pp. 1-1, 2016.
[15] R. Pecheux, R. Kabouche, E. Dogmus, A. Linge, E. Okada, M. Zegaoui, et al., "Importance of buffer configuration in GaN HEMTs for high microwave performance and robustness," pp. 228-231, 2017.
[16] S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, et al., "N-Polar GaN Cap MISHEMT With Record Power Density Exceeding 6.5 W/mm at 94 GHz," IEEE Electron Device Letters, vol. 38, pp. 359-362, 2017.
[17] Y.-K. Lin, S. Noda, C.-C. Huang, H.-C. Lo, C.-H. Wu, Q. H. Luc, et al., "High-Performance GaN MOSHEMTs Fabricated With ALD Al2O3 Dielectric and NBE Gate Recess Technology for High Frequency Power Applications," IEEE Electron Device Letters, vol. 38, pp. 771-774, 2017.
[18] P. M. White and R. M. Healy, "Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from "Coldfet" measurements," IEEE Microwave and Guided Wave Letters, vol. 3, pp. 453-454, 1993.
[19] J. Lu, Y. Wang, L. Ma, and Z. Yu, "A new small-signal modeling and extraction method in AlGaN/GaN HEMTs," Solid-State Electronics, vol. 52, pp. 115-120, 2008.
[20] M. Berroth and R. Bosch, "Broad-band determination of the FET small-signal equivalent circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 891-895, 1990.
[21] S. C. Kim, B. O. Lim, H. S. Lee, D. H. Shin, S. K. Kim, H. C. Park, et al., "Sub-100nm T-gate fabrication using a positive resist ZEP520/P(MMA-MAA)/PMMA trilayer by double exposure at 50kV e-beam lithography," Materials Science in Semiconductor Processing, vol. 7, pp. 7-11, 2004.
[22] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, "The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs," IEEE Electron Device Letters, vol. 21, pp. 268-270, 2000.
[23] J. Bernát, P. Javorka, A. Fox, M. Marso, H. Lüth, and P. Kordoš, "Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs," Solid-State Electronics, vol. 47, pp. 2097-2103, 2003.
[24] H. H. Berger, "Contact Resistance and Contact Resistivity," Journal of The Electrochemical Society, vol. 119, p. 507, 1972.
[25] Y. Jiang, Q. Wang, F. Zhang, L. Li, D. Zhou, Y. Liu, et al., "Reduction of leakage current by O2 plasma treatment for device isolation of AlGaN/GaN heterojunction field-effect transistors," Applied Surface Science, vol. 351, pp. 1155-1160, 2015.
[26] S. Arulkumaran, G. I. Ng, K. Ranjan, G. Z. Saw, P. P. Murmu, and J. Kennedy, "Improved device isolation in AlGaN/GaN HEMTs on Si by heavy Kr+ Ion implantation," pp. 115-116, 2014.
[27] J. W. Chung, "Millimeter-wave GaN High Electron Mobility Transistors and Their Integration with Silicon Electronics," Massachusetts Institute of Technology, 2011.
[28] B. Lu and T. Palacios, "High Breakdown ($> hbox{1500 V}$) AlGaN/GaN HEMTs by Substrate-Transfer Technology," IEEE Electron Device Letters, vol. 31, pp. 951-953, 2010.
[29] I. Milosavljevic, K. Shinohara, D. Regan, S. Burnham, A. Corrion, P. Hashimoto, et al., "Vertically scaled GaN/AlN DH-HEMTs with regrown n+GaN ohmic contacts by MBE," pp. 159-160, 2010.
[30] S. Haffouz, H. Tang, J. A. Bardwell, E. M. Hsu, J. B. Webb, and S. Rolfe, "AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy," Solid-State Electronics, vol. 49, pp. 802-807, 2005.
[31] D. Xiao, D. Schreurs, W. De Raedt, J. Derluyn, M. Germain, B. Nauwelaers, et al., "Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs," Solid-State Electronics, vol. 53, pp. 185-189, 2009.
[32] C.-W. Tsou, H.-C. Kang, Y.-W. Lian, and S. S. H. Hsu, "AlGaN/GaN HEMTs on Silicon With Hybrid Schottky–Ohmic Drain for RF Applications," IEEE Transactions on Electron Devices, vol. 63, pp. 4218-4225, 2016.
[33] S. Shin, I. M. Kang, and K. R. Kim, "Extraction Method for Substrate-Related Components of Vertical Junctionless Silicon Nanowire Field-Effect Transistors and Its Verification on Radio Frequency Characteristics," Japanese Journal of Applied Physics, vol. 51, p. 06FE20, 2012.
[34] P. Kordos, M. Mikulics, A. Fox, D. Gregusova, K. Cico, J. F. Carlin, et al., "RF Performance of InAlN/GaN HFETs and MOSHFETs with fT × LG up to 21 GHz . µm," IEEE Electron Device Letters, vol. 31, pp. 180-182, 2010.
[35] C. Ostermaier, G. Pozzovivo, J. F. Carlin, B. Basnar, W. Schrenk, Y. Douvry, et al., "Ultrathin InAlN/AlN Barrier HEMT with High Performance in Normally Off Operation," IEEE Electron Device Letters, vol. 30, pp. 1030-1032, 2009.
[36] K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, "Microwave Performance of 0.3-µm Gate-Length Multi-Finger AlGaN/GaN Heterojunction FETs with Minimized Current Collapse," Japanese Journal of Applied Physics, vol. 39, pp. 2431-2434, 2000.
[37] T. Han, S. Dun, Y. Lü, G. Gu, X. Song, Y. Wang, et al., "70-nm-Gated InAlN/GaN HEMTs Grown on SiC Substrate with fT/fmax> 160 GHz," Journal of Semiconductors, vol. 37, p. 024007, 2016.
[38] H. W. Then, L. A. Chow, S. Dasgupta, S. Gardner, M. Radosavljevic, V. R. Rao, et al., "High-K Gate Dielectric Depletion-Mode and Enhancement-Mode GaN MOS-HEMTs for Improved OFF-State Leakage and DIBL for Power Electronics and RF Applications," pp. 16.3.1-16.3.4, 2015.
[39] B. P. Downey, D. J. Meyer, D. S. Katzer, J. A. Roussos, P. Ming, and G. Xiang, "SiNx/InAlN/AlN/GaN MIS-HEMTs with 10.8 THz.V Johnson Figure of Merit," IEEE Electron Device Letters, vol. 35, pp. 527-529, 2014.
[40] S. Piotrowicz, O. Jardel, E. Chartier, R. Aubry, L. Baczkowski, M. Casbon, et al., "12W/mm with 0.15 µm InAlN/GaN HEMTs on SiC Technology for K and Ka-Bands Applications," pp. 1-3, 2014.
[41] S. D. Nsele, L. Escotte, J. G. Tartarin, and S. Piotrowicz, "Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies," pp. 1-4, 2013.
[42] S. Tirelli, D. Marti, L. Lugani, J.-F. Carlin, N. Grandjean, and C. R. Bolognesi, "AlN-Capped AlInN/GaN High Electron Mobility Transistors with 4.5 W/mm Output Power at 40 GHz," Japanese Journal of Applied Physics, vol. 52, p. 08JN16, 2013.
[43] M. L. Schuette, A. Ketterson, B. Song, E. Beam, T.-M. Chou, M. Pilla, et al., "Gate-Recessed Integrated E/D GaN HEMT Technology with fT/fmax >300 GHz," IEEE Electron Device Letters, vol. 34, pp. 741-743, 2013.
[44] D. M. Geum, J. H. Jang, M. S. Kim, and S. H. Shin, "75 nm T-shaped Gate for In0.17Al0.83N/GaN HEMTs with Minimal Short-Channel Effect," Electronics Letters, vol. 49, pp. 1536-1537, 2013.
[45] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, et al., "InAlN/AlN/GaN HEMTs with Regrown Ohmic Contacts and fT of 370 GHz," IEEE Electron Device Letters, vol. 33, pp. 988-990, 2012.
[46] S. Tirelli, D. Marti, H. Sun, A. R. Alt, J.-F. Carlin, N. Grandjean, et al., "Fully Passivated AlInN/GaN HEMTs with fT / fMAX of 205/220 GHz," IEEE Electron Device Letters, vol. 32, pp. 1364-1366, 2011.
[47] R. Wang, G. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider, et al., "210-GHz InAlN/GaN HEMTs with Dielectric-Free Passivation," IEEE Electron Device Letters, vol. 32, pp. 892-894, 2011.
[48] K. D. Chabak, D. E. W. Jr., M. Trejo, A. Crespo, M. Kossler, J. K. Gillespie, et al., "Performance of Strained AlInN/AlN/GaN HEMTs with Si3N4 and Ultra-Thin Al2O3 Passivation," presented at the CS MANTECH, Palm Springs, California, USA, 2011.
[49] K. D. Chabak, M. Trejo, A. Crespo, D. E. Walker, Y. Jinwei, R. Gaska, et al., "Strained AlInN/GaN HEMTs on SiC with 2.1-A/mm Output Current and 104-GHz Cutoff Frequency," IEEE Electron Device Letters, vol. 31, pp. 561-563, 2010.
[50] R. H. Wang, P. Saunier, X. Xing, C. X. Lian, X. A. Gao, S. P. Guo, et al., "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs with 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," Ieee Electron Device Letters, vol. 31, pp. 1383-1385, Dec 2010.
[51] F. Medjdoub, N. Herbecq, A. Linge, and M. Zegaoui, "High Frequency High Breakdown Voltage GaN Transistors," pp. 9.2.1-9.2.4, 2015.
[52] T. Chuan-Wei, L. Chen-Yi, L. Yi-Wei, and S. S. H. Hsu, "101-GHz InAlN/GaN HEMTs on Silicon With High Johnson’s Figure-of-Merit," IEEE Transactions on Electron Devices, vol. 62, pp. 2675-2678, 2015.
[53] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, pp. 992-994, 2014.
[54] S. Y. Liao, C. C. Lu, T. Chang, C. F. Huang, C. H. Cheng, and L. B. Chang, "Gate Length Scaling Effect on High-Electron Mobility Transistors Devices Using AlGaN/GaN and AlInN/AlN/GaN Heterostructures," Journal of Nanoscience and Nanotechnology, vol. 14, pp. 6243-6246, 2014.
[55] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with FT= 143 GHz," Applied Physics Express, vol. 3, p. 094101, 2010.
[56] S. Arulkumaran, G. I. Ng, and S. Vicknesh, "Enhanced Breakdown Voltage with High Johnson′s Figure-of-Merit in 0.3-µm T-gate AlGaN/GaN HEMTs on Silicon by (NH4)2Sx Treatment," IEEE Electron Device Letters, vol. 34, pp. 1364-1366, 2013.
[57] M. Jurkovic, D. Gregusova, V. Palankovski, S. Hascik, M. Blaho, K. Cico, et al., "Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region," IEEE Electron Device Letters, vol. 34, pp. 432-434, 2013.
[58] A. Goswami, R. J. Trew, and G. L. Bilbro, "Physics of gate leakage current in N-polar InAlN/GaN heterojunction field effect transistors," Journal of Applied Physics, vol. 116, p. 164508, 2014.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2018-11-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明