參考文獻 |
Chapter 1 reference
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, pp. 230–231, Jul. 1948.
[2] W. Shockley, “The theory of p‐n junctions in semiconductors and p‐n junction transistors,” Bell Syst. Tech. J., vol. 28, no. 3, pp. 435–489, Jul. 1949.
[3] P. Siffert and E. F. Krimmel, Silicon: Evolution and Future of a Technology. Berlin: New York: Springer, 2004.
[4] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide surface device,” in IRE Device Research Conference, Pittsburgh, USA, 1960. (This paper can be found in S. M. Sze, Semiconductor Devices: Pioneering Papers, World Scientific, Singapore, 1991.)
[5] S. M. Sze and M. K. Lee, Semiconductor devices: physics and technology 3rd, Hoboken, N. J.: Wiley, 2013.
[6] F. Mayer et al., “Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible tunnel FET performance,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 163–167.
[7] K. Gopalakrishnan, P. B. Griffin and J. D. Plummer, “I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2002, pp. 289–292.
[8] K. Gopalakrishnan, P. B. Griffin and J. D. Plummer, “Impact ionization MOS (I-MOS)-Part I: Device and circuit simulations,” IEEE Trans. Elec. Dev., vol. 52, no. 1, pp. 69–76, Jan. 2005.
[9] K. Gopalakrishnan, R. Woo, C. Jungemann, P. B. Griffin, and J. D. Plummer, “Impact ionization MOS (I-MOS)-part II: Experimental results,” IEEE Trans. Elec. Dev., vol. 52, no. 1, pp. 77–84, Jan. 2005.
[10] S. Salahuddin and S. Datta, “Use of negative capacitance to provide voltage amplification for low power nanoscale devices,” Nano Lett., vol. 8, no. 2, pp 405–410, Dec. 2008.
[11] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation,” in IEDM Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 255–258.
[12] B. Obradovic, T. Rakshit, R. Hatcher, J. A. Kittl, and M. S. Rodder, “Ferroelectric switching delay as cause of negative capacitance and the implications to NCFETs,” in VLSI Tech. Dig., Honolulu, HI, USA, Jun. 2018, pp. 51–52.
[13] H. Mertens et al., “Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates,” in VLSI Tech. Dig., Honolulu, HI, USA, Jun. 2016, pp. 158–159.
[14] N. Loubet et al., “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” in VLSI Tech. Dig., Kyoto, Japan, Jun. 2017, pp. 230–231.
[15] J. P. Colinge et al., “Nanowire transistors without junctions,” Nature Nanotech., vol. 5, no. 3, pp. 225–229, Mar. 2010.
[16] C. W. Lee et al., “Junctionless multigate field-effect transistor,” Appl. Phys. Lett., vol. 94, no. 5, pp. 053511-1–053511-2, Feb. 2009.
[17] A. Nazarov et al., Semiconductor-on-insulator materials for nanoelectronics applications. Berlin Heidelberg: Springer, 2011.
[18] H. C. Lin, C. I Lin, and T. Y. Huang, “Characteristics of n-type junctionless poly-Si thin-film transistors with an ultrathin channel,” IEEE Elec. Dev. Lett., vol. 33, no. 1, pp. 53–55, Jan. 2012.
[19] Y. Kamata, “High-k/Ge MOSFETs for future nanoelectronics,” Materials Today, vol. 11, no. 1-2, pp. 30–38, Jan.–Feb. 2008.
[20] K. Saraswat, “How far can we push Si CMOS? What lies beyond?” 2010. Available: https://web.stanford.edu/class/ee311/NOTES/Future%20Devices.pdf
[21] S. Takagi, “Re-examination of subband structure engineering in ultra-short channel MOSFETs under ballistic carrier transport,” in VLSI Tech. Dig., Kyoto, Japan, Jun. 2003, pp. 115–116.
[22] F. M. Bufler, K. Miyaguchi, T. Chiarella, N. Horiguchi, and A. Mocuta, “On the ballistic ratio in 14nm-Node FinFETs,” in European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, Sep. 2017, pp. 176–179.
[23] J. Wang and M. Lundstrom, “Does source-to-drain tunneling limit the ultimate scaling of MOSFETs?,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2002, pp. 707–710.
[24] S. Koba et al., “Channel length scaling limits of III–V channel MOSFETs governed by source-drain direct tunneling,” Jpn. J. Appl. Phys., vol. 53, no. 4S, pp. 04EC10-1–04EC10-5, Feb. 2014.
[25] P. S. Goley and M. K. Hudait, “Germanium based field-effect transistors: Challenges and opportunities,” Materials, vol. 7, no. 3, pp. 2301–2339, Mar. 2014.
[26] Y. Kamata, Y. Kamimuta, T. Ino and A. Nishiyama, “Direct comparison of ZrO2 and HfO2 on Ge substrate in terms of the realization of ultrathin high-k gate stacks,” Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2323–2329, Apr. 2005.
[27] F. K. LeGoues, B. S. Meyerson, and J. F. Mora, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett., vol. 66, no. 22, pp. 2903–2906, Jun. 1991.
[28] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett., vol. 64, no. 16, pp. 1943–1946, Apr. 1990.
[29] G. L. Luo et al., “High-speed GaAs metal gate semiconductor field effect transistor structure grown on a composite substrate,” J. Appl. Phys., vol. 101, no. 8, pp. 084501-1–084501-6, Apr. 2007.
[30] R. Pillarisetty et al., “High mobility strained germanium quantum well field effect transistor as the P-channel device option for low power (Vcc = 0.5 V) III-V CMOS architecture,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2010, pp. 150–153.
[31] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett., vol. 72, no. 14, pp. 1718–1720, Apr. 1998.
[32] T. F. Wietler, E. Bugiel, and K. R. Hofmann, “Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si(001) with low defect densities,” Appl. Phys. Lett., vol. 87, no. 18, pp. 182102-1–182102-3, Oct. 2005.
[33] J. S. Park et al., “Low-defect-density Ge epitaxy on Si(001) using aspect ratio trapping and epitaxial lateral overgrowth,” Electrochem. Solid-State Lett., vol. 12, no. 4, pp. H142–H144, Jan. 2009
[34] J. Suh, R. Nakane, N. Taoka, M. Takenaka, and S. Takagi, “Highly strained-SiGe-on-insulator p-channel metal-oxide-semiconductor field-effective transistors fabricated by applying Ge condensation technique to strained-Si-oninsulator substrates,” Appl. Phys. Lett., vol. 99, no. 14, pp. 142108-1–142108-3, Oct. 2011.
[35] J. W. Seo et al., “Epitaxial germanium-on-insulator grown on (001) Si,” Microelectron. Eng., vol. 84, no. 9–10, pp. 2328–2331, Sep. 2007.
[36] M. K. Hudait et al., “Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (< 2 m) composite buffer architecture for high-speed and low-voltage (0.5V) logic applications,” in IEDM Tech. Dig., Washington, DC, USA, Dec. 2007, pp. 625–628.
[37] A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Elec. Dev. Lett., vol. 26, no. 5, pp. 311–313, May 2005.
[38] A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett., vol. 85, no. 14, pp. 2815–2817, Oct. 2004.
[39] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, “Low surface roughness and threading dislocation density Ge growth on Si (001),” J. Cryst. Growth, vol. 310, no. 18, pp. 4273–4279, Aug. 2008.
[40] J. M. Hartmann et al., “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes,” J. Cryst. Grow, vol. 274, no. 1-2, pp. 90–99, Jan. 2005.
[41] H. Y. Yu, J. H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Elec. Dev. Lett., vol. 33, no. 4, pp. 579–581, Apr. 2012.
[42] T. H. Loh et al., “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett., vol. 90 no. 9, pp. 092108-1–092108-3, Feb. 2007.
[43] X. Ma et al., “Fabrication of high Ge content SiGe-on-insulator with low dislocation density by modified Ge condensation,” Appl. Surf. Sci., vol. 255, no. 17, pp. 7743–7748, May 2009.
[44] F. K. LeGoues, M. Copel, and R. M. Tromp, “Microstructure and strain relief of Ge films grown layer by layer on Si(001),” Phys. Rev. B, vol. 42, no. 18, pp. 11690–11700, Dec. 1990.
[45] D. Tetzlaff, T. F. Wietler, E. Bugiel, and H. J. Osten, “Carbon-mediated growth of thin, fully relaxed germanium films on silicon,” Appl. Phys. Lett., vol. 100, no. 1, 012108-1–012108-3, Jan. 2012.
[46] J. S. Park et al., “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Appl. Phys. Lett., vol. 90 no. 5, pp. 052113-1–052113-3, Feb. 2007.
[47] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, no. 10, pp. 1200–1202, Jun. 1991.
[48] K. W. Jo, W. K. Kim, M. Takenaka, and S. Takagi, “Hole mobility enhancement in extremely-thin-body strained GOI and SGOI pMOSFETs by improved Ge condensation method,” in VLSI Tech. Dig., Honolulu, HI, USA, Jun. 2018, pp. 195–196.
[49] M. M. Frank, “High-k/metal gate innovations enabling continued CMOS scaling,” in Proc. of the ESSCIRC, Helsinki, Finland, Sep. 2011, pp. 50–58.
[50] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2244–2246, Feb. 2000.
[51] K. Kita et al., “Control of high-k/germanium interface properties through selection of high-k materials and suppression of GeO volatilization,” Appl. Surf. Sci., vol. 254, no. 19, pp. 6100–6105, Jul. 2008.
[52] C. H. Lee et al., “Ge/GeO2 interface control with high-pressure oxidation for improving electrical characteristics,” Appl. Phys. Express, vol. 2, no. 7, pp. 071404-1–071404-3, Jul. 2009.
[53] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “High-electron-mobility Ge/GeO2 n-MOSFETs with two-step oxidation,” IEEE Trans. Elec. Dev., vol. 58, no. 5, pp. 1295–1301, May 2011.
[54] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “High-mobility Ge pMOSFET with 1-nm EOT Al2O3/GeOx/Ge gate stack fabricated by plasma post oxidation,” IEEE Trans. Elec. Dev., vol. 59, no. 2, pp. 335–341, Feb. 2012.
[55] R. Zhang, N. Taoka, P. C. Huang, M. Takenaka, and S. Takagi, “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation,” in IEDM Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 642–645.
[56] S. H. Yi, K. S. Chang-Liao, T. Y. Wu, C. W. Hsu, and J. Huang, “High performance Ge pMOSFETs with HfO2/Hf-Cap/GeOx gate stack and suitable post metal annealing treatments,” IEEE Elec. Dev. Lett., vol. 38, no. 5, pp. 544–547, May 2017.
[57] W. H. Chang, H. Ota, and T. Maeda, “Gate-first high-performance germanium nMOSFET and pMOSFET using low thermal budget ion implantation after germanidation technique,” IEEE Elec. Dev. Lett., vol. 37. No. 3, pp. 253–256, Mar. 2016.
[58] T. Hosoi et al., “Schottky source/drain germanium-based metal-oxide-semiconductor field-effect transistors with self-aligned NiGe/Ge junction and aggressively scaled high-k gate stack,” Appl. Phys. Lett., vol. 107, no. 25, pp. 252104-1–252104-4, Dec. 2015.
[59] M. Koike et al., “Diffusion and activation of n-type dopants in germanium,” J. Appl. Phys., vol. 104, no. 2, pp. 023523-1–023523-5, Jul. 2008.
[60] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett., vol. 89, no. 25, pp. 252110-1–252110-3, Dec. 2006.
[61] T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett., vol. 91, no. 12, pp. 123123-1–123123-3, Sep. 2007.
[62] J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett., vol. 98, no. 8, 082112-1–082112-3, Feb. 2011.
[63] M. J. H. van Dal et al., “Ge n-channel FinFET with optimized gate stack and contacts,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2014, pp. 235–238.
[64] E. Simoen et al., “Ion-implantation issues in the formation of shallow junctions in germanium,” Mat. Sci. Semicon. Proc., vol. 9, no. 4–5, pp. 634–639, Oct. 2006.
[65] J. K. Kim et al., “Analytical study of interfacial layer doping effect on contact resistivity in metal-interfacial layer-Ge structure,” IEEE Elec. Dev. Lett., vol. 35, no. 7, pp. 705–707, Jul. 2014.
[66] H. Wu et al., “Germanium nMOSFETs with recessed channel and S/D: Contact, scalability, interface, and drain current exceeding 1 A/mm,” IEEE Trans. Elec. Dev., vol. 62, no. 5, pp. 1419–1426, May 2015.
[67] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., vol. 101, no. 22, pp. 223107-1–223107-5, Nov. 2012.
[68] P. W. Li et al., “Method for manufacturing gate stack structure in insta-metal-oxide-semiconductor field-effect transistor,” US 9,299,796, Mar. 29, 2016.
[69] Y. J. Yang, W. S. Ho, C. F. Huang, S. T. Chang, and C. W. Liu, “Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 91, no. 10, pp. 102103-1–102103-3, Sep. 2007.
[70] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A solution for higher carrier mobility in nanoscale MOSFETs,” Annu. Rev. Mater. Res., vol. 39, pp. 203–229, 2009.
[71] M. V. Fischettia and S. E. Laux. “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, Aug. 1996.
[72] J. O. Borland, “Low temperature activation of ion implanted dopants: A review,” in Extended Abstracts of International Workshop on Junction Technology (IWJT), Tokyo, Japan, Dec. 2002, pp. 85–88.
[73] G. Queirolo et al., “Low temperature dopant activation of BF2 implanted silicon,” J. Electron. Mat., vol. 20, no. 5, pp. 373–378, Mar. 1991.
[74] W. T. Lai et al., “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 224-1–224-7, May 2015.
[75] D. P. Brunco et al., “Germanium MOSFET devices: Advances in materials understanding, process develo Appl. Surf. Sci pment, and electrical performance,” J. Electrochem. Soc., vol. 155, no. 7, pp. H552–H561, May 2008.
Chapter 2 reference
[1] W. T. Lai et al., “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 224-1–224-7, May 2015.
[2] K. H. Chen, C. Y. Chien, and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, vol. 21, no. 5, pp. 055302-1–055302-9, Feb. 2010.
[3] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots,” Appl. Phys. Lett., vol. 105, no. 12, pp. 122102-1–122102-5, Sep. 2014.
[4] K. H. Chen, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “The pivotal role of oxygen interstitials in the dynamics of growth and movement of germanium nanocrystallites,” Cryst. Eng. Comm., vol. 17, no. 33, pp. 6370–6375, Jul. 2015.
[5] T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, “‘Symbiotic’ semiconductors: Unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D: Appl. Phys., vol. 50, no. 10, pp. 105101-1–105101-12, Feb. 2017.
[6] R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues, and E. J. van Loenen, “High-temperature SiO2 decomposition at the SiO2/Si interface,” Phys. Rev. Lett., vol. 55, no. 21, pp. 2332–2335, Nov. 1985.
[7] K. Hofmann and S. I. Raider, “Acceleration factors for the decomposition of thermally grown SiO2 films,” J. Electrochem. Soc., vol. 134, no. 1, pp. 240–244, Jan. 1987.
[8] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, “Investigation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition,” J. Vac. Sci. Technol. B, vol. 16, no. 4, pp. 2171–2176, May 1998.
[9] D. Starodub, E. P. Gusev, E. Garfunkel and T. Gustafsson, “Silicon oxide decomposition and desorption during the thermal oxidation of silicon,” Surf. Rev. Lett., vol. 6, no. 1, pp. 45–52, Feb. 1999.
[10] A. A. Stekolnikov and F. Bechstedt, “Shape of free and constrained group-IV crystallites: Influence of surface energies,” Phys. Rev. B, vol. 72, no. 12, pp. 125326-1–125326-9, Sep. 2005.
[11] P. H. Liao et al., “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., vol. 105, no. 17, pp. 172106-1–172106-5, Oct. 2014.
[12] D. P. Brunco et al., “Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance,” J. Electrochem. Soc., vol. 155, no. 7, pp. H552–H561, May 2008.
[13] K. C. Yang, “Optimization on self-organized Ge-nanoball/SiO2/SiGe gate-stacking heterostructure with interface engineering,” M.S. thesis, Department of Electrical Engineering, National Central University, Taiwan (R.O.C.), 2015.
[14] D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, “Ge (100) and (111) n- and p-FETs with high mobility and low-T mobility characterization,” IEEE Trans. Elec. Dev., vol. 56, no. 4, pp. 648–655, Apr. 2009.
Chapter 3 reference
[1] J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonic, vol. 4, no. 8, pp. 527–534, Aug. 2010.
[2] Y. J. Yang, W. S. Ho, C. F. Huang, S. T. Chang, and C. W. Liu, “Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 91, no. 10, pp. 102103-1–102103-3, Sep. 2007.
[3] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A solution for higher carrier mobility in nanoscale MOSFETs,” Annu. Rev. Mater. Res., vol. 39, pp. 203–229, 2009.
[4] P. H. Liao et al., “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., vol. 105, no. 17, pp. 172106-1–172106-5, Oct. 2014.
[5] C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature, vol. 121, no. 3048, pp. 501–502, Mar. 1928.
[6] T. H. Cheng, “Raman scattering of self-organized Ge quantum dot,” M.S. thesis, Department of Physics, National Central University, Taiwan (R.O.C.), 2014.
[7] J. E. Chang et al., “Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots,” J. Phys. D: Appl. Phys., vol. 45, no. 10, pp. 105303-1–150303-9, Feb. 2012.
[8] I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line. Dekker: New York, 2001.
[9] Y. Jie, A. T. S. Wee, C. H. A. Huan, Z. X. Shen, and W. K. Choi, “Phonon confinement in Ge nanocrystals in silicon oxide matrix,” J. Appl. Phys., vol. 109, no. 3, pp. 033107-1–033107-12, Feb. 2011.
[10] K. L. Teo, S. H. Kwok, and P. Y. Yu, “Quantum confinement of quasi-two-dimensional E1 excitons in Ge nanocrystals studied by resonant Raman scattering,” Phys. Rev. B, vol. 62, no. 3, pp. 1584–1587, Jul. 2000.
[11] S. Lee, S. Huang, G. Conibeer, and M. Green, “In-situ fabrication and characterization of ordered Ge QDs in Si3N4 matrix without barrier layers by rf-magnetron sputtering,” Appl. Surf. Sci., vol. 290, pp. 167–171, Nov. 2013.
[12] A. B. Talochkin, V. A. Markov, and V. I. Mashanov, “Inelastic strain relaxation in the Ge quantum dot array,” Appl. Phys. Lett., vol. 91, no. 9, pp. 093127-1–093127-3, Aug. 2007.
[13] A. V. Baranov et al., “Polarized Raman spectroscopy of multilayer Ge/Si(001) quantum dot heterostructures,” J. Appl. Phys., vol. 96, no. 5, pp. 2857¬–2863, Jun. 2004.
[14] J. R. Huntzinger, A. Mlayah, V. Paillard, A. Wellner, and N. Combe, “Electron-acoustic-phonon interaction and resonant Raman scattering in Ge quantum dots: Matrix and quantum confinement effects,” Phys. Rev. B, vol. 74, no. 11, pp. 115308-1–115308-12, Sep. 2006.
[15] Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett., vol. 90, no. 8, pp. 081909-1–081909-3, Feb. 2007.
[16] S. Cosentino et al., “Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4,” J. Appl. Phys., vol. 115, no. 4, pp. 043103-1–043103-7, Jan. 2014.
[17] K. W. Adu, H. R. Gutiérrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B, vol. 73., no. 15, pp. 155333-1–155333-9, Apr. 2006.
[18] S. Rohmfeld, M. Hundhausen, and L. Ley, “Raman scattering in polycrystalline 3C-SiC: Influence of stacking faults,” Phys. Rev. B, vol. 58., no. 15, pp. 9858–9862, Oct. 1998.
[19] Y. H. Gao, Y. Bando, T. Sato, Y. F. Zhang, and X. Q. Gao, “Synthesis, Raman scattering and defects -Ga2O3 of nanorods,” Appl. Phys. Lett., vol. 81, no. 12, pp. 2267–2269, Jul. 2002.
[20] F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors,” Phys. Rev. B, vol. 5., no. 2, pp. 580–593, Jan. 1972.
[21] D. S. Sukhdeo, D. Nam,1, J. H. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain,” Photon. Res., vol. 2, no. 3, pp. A8–A13, Jun. 2014.
[22] M. H. Kuo et al., “‘Embedded emitters’: Direct bandgap Ge nanodots within SiO2,” J. Appl. Phys., vol. 120, no. 23, pp. 233106-1–233106-6, Dec. 2016.
[23] P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, “Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots,” Phys. Rev. B, vol. 68, no. 12, pp. 125302-1–125302-6, Sep. 2003.
[24] J. H. Lin et al., “Strain analysis of Ge/Si(001) islands after initial Si capping by Raman spectroscopy,” J. Appl. Phys., vol. 101, no. 8, pp. 083528-1–083528-4, Apr. 2007.
[25] P. H. Liao, K. P. Peng, H. C. Lin, T. George, and P. W. Li, “Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: A key enabler for realizing Ge MOS devices,” Nanotechnology, vol. 29, no. 20, pp. 205601-1–205601-9, Mar. 2018.
[26] J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev., vol. 155, no. 3, pp. 712–714, Mar. 1967.
[27] H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun., vol. 39, no. 5, pp. 625–629, Aug. 1981.
[28] F. Pezzoli et al., “Raman spectroscopy determination of composition and strain in Si1-xGex/Si heterostructures,” Mat. Sci. Semicon. Proc., vol. 11, no. 5–6, pp. 279–284, Jan. 1999.
[29] K. K. Tiong, P. M. Amirtharaj, F. H. Pollak, and D. E. Aspnes, “Effects of As+ ion implantation on the Raman spectra of GaAs: ‘Spatial correlation’ interpretation,” Appl. Phys. Lett., vol. 44, no. 1, pp. 122–124, Oct. 1983.
[30] G. X Cheng, H. Xia, K. J. Chen, W. Zhang, and X. K. Zhang, “Raman measurement of the grain size for silicon crystallites,” Phys. stat. sol. (a), vol. 118, no. 1, pp. K51–K54, Mar. 1990.
[31] G. Kanellis, J. F. Morhange, and M. Balkanski, “Effect of dimensions on the vibrational frequencies of thin slabs of silicon,” Phys. Rev. B, vol. 21, no. 4, pp. 1543–1548, Feb. 1980.
[32] D. Olego and M. Cardona, “Pressure dependence of Ratnan phonons of Ge and 3C-SiC,” Phys. Rev. B, vol. 25, no. 2, pp. 1151–1160, Jan. 1982.
[33] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 339-1–339-5, Jul. 2014.
[34] T. George et al., “The germanium “Halo”: Visualizing Ge interstitial dynamics in nanocrystallite formation,” Jpn. J. Appl. Phys., vol. 57, no. 10, pp. 105502-1–105502-7, Sep. 2018.
[35] J. D. Plummer, M. Deal, and P. D. Griffin, Silicon VLSI technology: Fundamentals, practice, and modeling. Prentice Hall: New Jersey, 2000.
[36] H. Ohta, T. Watanabe, and I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A molecular dynamics study,” Jpn. J. Appl. Phys., vol. 36, no. 5B, pp. 3277–3282, May 2007.
[37] I. D. Sharp et al., “Mechanism of stress relaxation in Ge nanocrystals embedded in SiO2,” Appl. Phys. Lett., vol. 86, no. 6, pp. 063107-1–063107-3, Feb. 2005.
[38] A. Wellner et al., “Stress measurements of germanium nanocrystals embedded in silicon oxide,” Appl. Phys. Lett., vol. 94, no. 9, pp. 5639–5642, Nov. 2003.
[39] K. J. Chang and M. L. Cohen, “First-principles study of the structural properties of Ge,” Phys. Rev. B, vol. 34, no. 12, pp. 8581–8590, Dec. 1986.
[40] Z. Dohčević-Mitrović, Z. V. Popović and M. Šćepanović, “Anharmonicity effects in nanocrystals studied by Raman scattering spectroscopy,” Acta Phys. Pol. A, vol. 116, no. 1, pp. 36–41, Jul. 2009.
[41] G. Grimvall, Thermophysical Properties of Materials. Elsevier Science: North Holland, 1999.
[42] X. L. Wu et al., “Orange-green emission from porous Si coated with Ge films: The role of Ge-related defects,” J. Appl. Phys., vol. 86, no. 1, pp. 707–709, Jul. 1999.
[43] C. W. Tien, “Study of Si interstitials effect on formation and light emitting/detection characteristics of Ge-QD/SiO2/SiGe shell heterostructure,” M.S. thesis, Institute of Electronics, National Chiao Tung University, Taiwan (R.O.C.), 2018.
[44] Z. H. Wu, “Formation of Ge quantum dot and shell for Si on insulator applications,” M.S. thesis, Department of Electrical Engineering, National Central University, Taiwan (R.O.C.), 2012.
Chapter 4 reference
[1] P. H. Liao, K. P. Peng, H. C. Lin, T. George, and P. W. Li, “Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: A key enabler for realizing Ge MOS devices,” Nanotechnology, vol. 29, no. 20, pp. 205601-1–205601-9, Mar. 2018.
[2] C. C. Wang, P. H. Liao, M. H. Kuo, T. George, and P. W. Li, “The curious case of exploding quantum dots: Anomalous migration and growth behaviors of Ge under Si oxidation,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 192-1–192-6, Apr. 2013.
[3] C. Jaussaud, J. Stoemenos, J. Margail, A. M. Papon, and M. Bruel, “Defects in SIMOX structures: Causes and solutions,” Vacuum, vol. 42, no. 5–6, pp. 341–347, Jan. 1991.
[4] F. Pezzoli et al., “Raman spectroscopy determination of composition and strain in Si1-xGex/Si heterostructures,” Mat. Sci. Semicon. Proc., vol. 11, no. 5–6, pp. 279–284, Jan. 1999.
[5] J. R. Ligenza, “Effect of crystal orientation on oxidation rates of silicon in high pressure steam,” J. Phys. Chem., vol. 65, no. 11, pp. 2011–2014, Nov. 1961.
[6] T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, “‘Symbiotic’ semiconductors: Unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D: Appl. Phys., vol. 50, no. 10, pp. 105101-1–105101-12, Feb. 2017.
[7] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 339-1–339-5, Jul. 2014.
[8] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, “Oxidation studies of SiGe,” J. Appl. Phys., vol. 65, no. 4, pp. 1724–1728, Feb. 1989.
[9] D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo, and K. L. Wang, “Wet oxidation of GeSi strained layers by rapid thermal processing,” Appl. Phys. Lett., vol. 59, no. 4, pp. 369–371, Jul. 1990.
[10] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, no. 10, pp. 1200–1202, Jun. 1991.
[11] W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. L, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater., vol. 3, Article 5, pp. 1–9, Feb. 2016.
[12] W. T. Lai et al., “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 224-1–224-7, May 2015.
[13] C. W. Tien, “Study of Si interstitials effect on formation and light emitting/detection characteristics of Ge-QD/SiO2/SiGe shell heterostructure,” M.S. thesis, Institute of Electronics, National Chiao Tung University, Taiwan (R.O.C.), 2018.
[14] H. H. Silvestri, H. Bracht, J. L. Hansen, A N. Larsen, and E. E. Haller, “Diffusion of silicon in crystalline germanium,” Semicond. Sci. Technol., vol. 21, no. 6, pp. 758–762, Apr. 2006.
[15] K. J. Kuhn, A. Murthy, R. Kotlyar, and M. Kuhn, “Past, present and future: SiGe and CMOS transistor scaling,” ECS Trans., vol. 33, no. 6, pp. 3–17, 2010.
[16] A. E. Dolbak and B. Z. Olshanetsky, “Ge diffusion on Si surfaces,” Cent. Eur. J. Phys., vol. 4, no. 3, pp. 310–317, Sep. 2006.
[17] L. Vescan, K. Grimm, and C. Dieker, “Facet investigation in selective epitaxial growth of Si and SiGe on (001) Si for optoelectronic devices,” J. Vac. Sci. Technol. B, vol. 16, no. 3, pp. 1549–1554, May/Jun. 1998.
Chapter 5 reference
[1] I. H. Chen, “Self-aligned Ge quantum-dot single-hole transistors for nano-thermometry application,” Ph.D. dissertation, Department of Electrical Engineering, National Central University, Taiwan (R.O.C.), 2015.
[2] M. Chen and Y. B. Wang, “Overview of SOI technologies in China,” in IEEE International SOI Conference, Foster City, CA, USA, Oct. 2009, pp. 1–4. DOI: 10.1109/SOI.2009.5318787
Chapter 6 reference
[1] S. H. Yi, K. S. Chang-Liao, T. Y. Wu, C. W. Hsu, and J. Huang, “High performance Ge pMOSFETs with HfO2/Hf-Cap/GeOx gate stack and suitable post metal annealing treatments,” IEEE Elec. Dev. Lett., vol. 38, no. 5, pp. 544–547, May 2017.
[2] W. H. Chang, H. Ota, and T. Maeda, “Gate-first high-performance germanium nMOSFET and pMOSFET using low thermal budget ion implantation after germanidation technique,” IEEE Elec. Dev. Lett., vol. 37. No. 3, pp. 253–256, Mar. 2016.
[3] T. Hosoi et al., “Schottky source/drain germanium-based metal-oxide-semiconductor field-effect transistors with self-aligned NiGe/Ge junction and aggressively scaled high-k gate stack,” Appl. Phys. Lett., vol. 107, no. 25, pp. 252104-1–252104-4, Dec. 2015.
[4] M. S. Parihar and A. Kranti, “Revisiting the doping requirement for low power junctionless MOSFETs,” Semicond. Sci. Technol., vol. 29, no. 7, pp. 075006-1–075006-11, Apr. 2014.
[5] P. H. Liao et al., “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., vol. 105, no. 17, pp. 172106-1–172106-5, Oct. 2014.
[6] W. T. Lai et al., “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 224-1–224-7, May 2015.
[7] P. H. Liao, K. P. Peng, H. C. Lin, T. George, and P. W. Li, “Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: A key enabler for realizing Ge MOS devices,” Nanotechnology, vol. 29, no. 20, pp. 205601-1–205601-9, Mar. 2018.
[8] P. H. Liao, K. P. Peng, H. C. Lin, T. George, and P. W. Li, “Self-organized Ge nanospherical gate/SiO2/Si0.15Ge0.85–nanosheet n-FETs featuring high ON-OFF drain current ratio,” IEEE J. Elec. Dev. Soc., to be published.
[9] J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett., vol. 98, no. 8, 082112-1–082112-3, Feb. 2011.
[10] M. J. H. van Dal et al., “Ge n-channel FinFET with optimized gate stack and contacts,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2014, pp. 235–238.
[11] M. Koike et al., “Diffusion and activation of n-type dopants in germanium,” J. Appl. Phys., vol. 104, no. 2, pp. 023523-1–023523-5, Jul. 2008.
[12] H. C. Lin, C. I Lin, and T. Y. Huang, “Characteristics of n-type junctionless poly-Si thin-film transistors with an ultrathin channel,” IEEE Elec. Dev. Lett., vol. 33, no. 1, pp. 53–55, Jan. 2012.
[13] C. W. Lee et al., “High-temperature performance of silicon junctionless MOSFETs,” IEEE Trans. Elec. Dev., vol. 57, no. 3, pp. 620–625, Mar. 2010.
[14] S. Villa, A. L. Lacaita, L. M. Perron, and Roberto Bez, “A physically-based model of the effective mobility in heavily-doped n-MOSFET’s,” IEEE Trans. Elec. Dev., vol. 45, no. 1, pp. 110–115, Jan. 1998.
[15] F. Silveira, D. Flandre, and P. G. A. Jespers, “A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-Insulator micropower OTA,” IEEE J. Solid-State Circ., vol. 31, no. 9, pp. 1314–1319, Sep. 1996.
[16] G. V. Luong, S. Trellenkamp, Q. T. Zhao, S. Mantl, and K. K. Bourdelle, “Strained Si nanowire GAA n-TFETs for low supply voltages,” in EUROSOI-ULIS, Bologna, Italy, Jan. 2015, pp. 65–68.
[17] J. P. Campbell, K. P. Cheung, J. S. Suehle, and A. Oates, “A simple series resistance extraction methodology for advanced CMOS devices,” IEEE Elec. Dev. Lett., vol. 32, no. 8, pp. 1047–1049, Aug. 2011.
[18] H. Wu et al., “Germanium nMOSFETs with recessed channel and S/D: Contact, scalability, interface, and drain current exceeding 1 A/mm,” IEEE Trans. Elec. Dev., vol. 62, no. 5, pp. 1419–1426, May 2015.
[19] A. Nazarov et al., Semiconductor-on-insulator materials for nanoelectronics applications. Berlin Heidelberg: Springer, 2011.
[20] D. L. Rode, “Electron mobility in Ge, Si, and GaP,” Phys. Stat. Sol. (b), vol. 53, no. 1, pp. 245–254, Sep. 1972.
[21] L. Chen, F. Cai, U. Otuonye, and W. D. Lu, “Vertical Ge/Si core/shell nanowire junctionless transistor,” Nano. Lett., vol. 16, no. 1, pp. 420–426, Jan. 2016.
[22] P. H. Liao et al., “Self-organized gate stack of Ge nanosphere/SiO2/Si1-xGex enables Ge-based monolithically-integrated electronics and photonics on Si platform,” in VLSI Tech. Dig., Honolulu, HI, USA, Jan. 2018, pp. 157¬–158.
Chapter 7 reference
[1] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., vol. 101, no. 22, pp. 223107-1–223107-5, Nov. 2012.
[2] P. H. Liao et al., “Self-organized gate stack of Ge nanosphere/SiO2/Si1-xGex enables Ge-based monolithically-integrated electronics and photonics on Si platform,” in VLSI Tech. Dig., Honolulu, HI, USA, Jan. 2018, pp. 157¬–158. |