所別: 資工類

共全頁 第上頁

科目:

離散數學與線性代數

本科考試禁用計算器

離散數學 1~5題,每題5分,共25分;單選題。

- 1. Which one of the following statements is unlikely a proposition?
 - A. 貨賣得出去,人進得來,高雄發大財。
 - B. 冷泉加熱就變溫泉了。
 - C. 垃圾不分藍綠。
 - D. 如果我當選,明年元旦起市民免費參觀花博。
 - E. 我們不接受一國兩制。
- 2. Which of the following statements about Fibonacci numbers is incorrect?
 - A. The first two numbers of Fibonacci numbers are commonly defined as 0 and 1, but it could be defined differently.
 - B. We can find a lower bound of Fibonacci numbers that grows linearly.
 - C. We can find a lower bound of Fibonacci numbers that grows exponentially.
 - D. We can find an upper bound of Fibonacci numbers that grows linearly.
 - E. We can find an upper bound of Fibonacci numbers that grows exponentially.
- 3. Which is the answer of $3^{302} \mod 11$?
 - A. 1 B. 3 C. 6 D. 9 E. None of the above.
- 4. Consider the divisibility relation (i.e., |) and the poset R = (S, |), where $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. We can conclude that:
 - A. R is a total order.
 - B. R does not have a maximal element.
 - C. R has a greatest lower bound.
 - D. R is a lattice.
 - E. None of the above.
- 5. Consider Figure X below. Assume that Dijkstra's algorithm is used to find the shortest path starting from node a. Which of the following statements is correct?

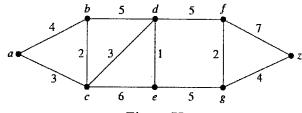
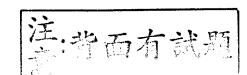



Figure X

- A. The cost of the shortest path from a to z is 17.
- B. In Dijkstra's algorithm, after adding nodes a and c, the next node to be added will be node d.
- C. The shortest path must contain the smallest number of edges.
- D. For each destination, there is only one possible shortest path.
- E. None of the above.

離散數學 $6 \sim 10$ 題,每題 5 分,共 25 分;多選題,答錯每選項倒扣 1 分。 倒扣到該大題 0 分為止

- 6. Let R be a total order relation, what following logical statements are true?
 - A. $\forall x, y, (\neg R(x, y)) \rightarrow R(y, x)$
 - B. $\forall x, y, (R(x, y) \land R(y, x)) \rightarrow (x = y)$
 - C. $\exists x, \forall y, R(x,y)$
 - D. $\forall x, y, (R^{-1}(x, y) \lor R^{-1}(y, x))$
 - $E. \ \forall x, \neg R^{-1}(x,x)$

所別: 資工類

共全頁 第三頁

科目: 離散數學與線性代數

本科考試禁用計算器

7. We want to analyze the time complexity of the procedure P with the listed pseudo-code. Suppose procedure Q take $\theta(\sqrt{m})$ time to divide an array into three equal size sub-arrays, where m is the size of input; each statement line counts 1 step.

Procedure $P(A[a_1, a_2, ..., a_n])$

 B_1 , B_2 , B_3 are initially empty arrays.

- 1. if n < 3 exit.
- 2. else call Q (A); /* and get B_1 , B_2 , B_3 */
 /* each is size of n/3 */
- 3. call $P(B_1)$;
- 4. call $P(B_{3,})$;
- 5. return;

Suppose the size of input array, n, is a number of power of 3, What of the following options are true about the number of steps (p(n)) and complexity function (f_p) of the procedure P in the question above? $(c_i$ are constants in the following equations)

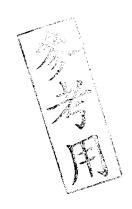
A.
$$p(n) = p(n/3) + c_1 n^2 + c_2$$

B.
$$p(n) = 2p(n/3) + c_1 n^{1/2} + c_2$$

C.
$$f_p = O(n^{1/2})$$

$$D. f_p = O(n^{1/2} \log n)$$

$$E. \dot{f_p} = \theta(n^{\log_3 2})$$


- 8. For integers i and j define $i \sim j$ if 2a + 3b = 5n for some integer n. What of the following claims about relation " \sim " are true?
 - A. \sim is not reflexive.
 - B. \sim is not symmetric.
 - $C. \sim is$ not transitive.
 - D. \sim is an equivalence relation.
 - E. \sim is a partial order.
- 9. Let $f: A \to B$ and $g: B \to C$ be functions. What following statements are true?
 - A. if $g \circ f$ is one-to-one, so is f.
 - B. if $g \circ f$ is one-to-one, so is g.
 - C. if $g \circ f$ is onto, so is f.
 - D. if $g \circ f$ is onto, so is g.
 - E. if $g \circ f$ is a bijection, so are g and f.
- 10. What parts are true when using generating function to solve the recurrence relation:

$$\forall n \ge 2, a_n = -6a_{n-1} + 7a_{n-2}, \ a_0 = -5, a_1 = 3. \ (g(z))$$
 is the generating function

A.
$$g(z) = -(33z + 5)/(1 + 6z - 7z^2)$$

B.
$$g(z) = (-1/(1+7z)) - (4/(1-z))$$

- C. $a_n = -4 (-7)^n$
- D. $a_n = 8n 5$
- E. none of the above.

注:背面有試題

所別: 資工類

共4頁 第3頁

科目: 離散數學與線性代數

本科考試禁用計算器

線性代數 11~12 題,每題 5分,共10分;多選題(每一小題答對給1分、答錯扣1分、不答0分)

- 11. Which of the following are correct?
 - A. Eigenvalues of a triangular matrix are its diagonal elements.
 - B. If A is invertible, then so is A^{T} .
 - C. If A and B are invertible, then so is AB.
 - D. It is possible that $AB \neq BA$.
 - E. It is possible to have real-valued matrix A such that $A^2 = -I$.
- 12. Let A and B be two matrices and x be a column vector. Which of the following sub-problems are correct?
 - A. A symmetric matrix has real eigenvalues and is diagonalizable.
 - B. If A is diagonalizable and invertible, then A^{-1} is also diagonalizable.
 - C. If A and B are $m \times n$ matrices, and A is invertible, then AB is similar to BA.
 - D. If A and B are diagonalizable, then AB is also diagonalizable.
 - E. If A is a symmetric $n \times n$ matrix whose entries are all positive, then the quadratic form $x^T A x$ is positive definite.

線性代數 13~15題,每題5分,共15分;單選題。

13. Given
$$A = \begin{bmatrix} 0.6 & 0.4 & 0.3 \\ 0.4 & 0.9 & 0.2 \\ 0.3 & 0.2 & 0.8 \end{bmatrix}$$
. What is the sum of all A's eigenvalues?

14. If
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
, what is the solution of $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 7.5 \\ 15.5 \\ 14.0 \\ 4.0 \end{bmatrix}$?

A.
$$\begin{bmatrix} 0.5 \\ 0.5 \\ 1.5 \\ 2.5 \\ -0.5 \\ 1.5 \end{bmatrix} B. \begin{bmatrix} -0.5 \\ -1.5 \\ 0.5 \\ 1.5 \\ 2.5 \end{bmatrix} C. \begin{bmatrix} 1.5 \\ -0.5 \\ -1.5 \\ 0.5 \\ 1.5 \end{bmatrix} D. \begin{bmatrix} 0.5 \\ 1.5 \\ 2.5 \\ -0.5 \\ -1.5 \end{bmatrix} E. \begin{bmatrix} 1.5 \\ 2.5 \\ -0.5 \\ -1.5 \\ 0.5 \end{bmatrix}$$
.

15. What is the inverse of the matrix
$$\begin{bmatrix} -4 & 0 & 5 \\ -3 & 3 & 5 \\ -1 & 2 & 2 \end{bmatrix}$$
?

A.
$$\begin{bmatrix} 1 & -2 & -2 \\ 0 & 1 & \frac{1}{3} \\ 0 & -8 & -3 \end{bmatrix}$$
 B.
$$\begin{bmatrix} -4 & 10 & -15 \\ 1 & -3 & 5 \\ -3 & 8 & -12 \end{bmatrix}$$
 C.
$$\begin{bmatrix} -6 & 16 & -25 \\ 1 & -3 & 5 \\ -3 & 8 & -12 \end{bmatrix}$$
 D.
$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 E.
$$\begin{bmatrix} 4 & -6 & -15 \\ -1 & 3 & 5 \\ 3 & 8 & -12 \end{bmatrix}$$

線性代數 16~20 題, 每題 5分, 共 25分。多選題 (每一小題答對給 1分、答錯扣 1分、不答 0分)

- 16. If A is square matrix with real entries and has eigenvalue λ. Which are correct? 倒扣到該大題 0 分為止
 - A. If λ is a complex number a+ib, then a-ib may be another eigenvalue.
 - B. If λ is a complex number, then the corresponding eigenvector must be a complex vector.
 - C. A is symmetric, then λ is real.
 - D. A is symmetric, all eigenspaces are orthogonal.
 - E. The eigenvalues of matrix $(A^{T}A)$ are arbitrary real number.

注:背面有試題

所別: 資工類

共全頁 第一頁

科目: 離散數學與線性代數

本科考試禁用計算器

17. If \dot{x} is the least-squares solution of the linear system Ax = b. Which are correct?

A. $\dot{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$.

B. If (A^TA) is not invertible, then \dot{x} is not existed.

C. \dot{x} is not unique.

D. If $b \in \operatorname{Col} A$, then $\dot{x} = x$.

E. $\dot{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathrm{T}} \mathbf{b}$ for any \mathbf{A} .

18. If A is an matrix. Which are wrong?

A. A is invertible, thus $A = PDP^{-1}$, where D is a diagonal matrix.

B. A is not a square matrix, thus A can not be Q R factorization.

C. A is not symmetric, thus A can not be PDP^T factorization.

D. A has n distinct eigenvalues, thus $A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + ... + \lambda_n u_n u_n^T$.

E. A is symmetric, thus $A = U \Sigma V^{T}$ (singular value decomposition).

19. What are the necessary conditions for a matrix can be Cholesky factorization.

A. square matrix.

B. linearly independent columns.

C. enough linearly independent eigenvectors.


D. all eigenvalues are positive.

E. symmetric matrix.

20. Diagonalize matrix $A = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 5 & 1 \\ 5 & 1 & 1 \end{bmatrix}$; that is to find matrices P and D such that $A = PDP^T$. Which values are

not in P or D matrices ?

 $A. 1/\sqrt{3}$. $B. -1/\sqrt{8}$. $C. 2/\sqrt{8}$. D. -1/2, E. 1/3

注:背面有試題