參考文獻 |
台灣電力公司:http://www.taipower.com.tw/
行政院原子能委員會:http://www.aec.gov.tw/
經濟部低放射性廢棄物最終處置:http://www.llwfd.org.tw/index.aspx
王茂齡(1987),輸送現象,高立圖書有限公司。
王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
吳桂卿,「不同養護溫度條件對提升障壁混凝土品質之成效」,碩士論文,國立中央大學土木工程研究所,中壢(2016)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,中壢(2014)。
陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2012)。
陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
陳雅文,「低放射性最終處置場障壁混凝土以熱養護提升品質之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2018)。
彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
廖文佑,「低放射性廢棄物盛裝容器混凝土品質檢測之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2017)。
羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
AASHTO T358-15 Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.
Ann, K.Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures.” Construction and Building Materials, Vol. 23, pp. 239- 245.
ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
Bai, J., Wild, S., and Sabir, B. B. (2003). “Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater.” Cement and Concrete Research, Vol. 33, pp. 353-362.
Bandelj, B., Saje, D., Šušteršič, J., Lopatič, J., and Saje, F. (2011). “Free Shrinkage of High Performance Steel Fibre Reinforced Concrete.” Journal of Testing and Evaluation, 39(2), 166-176.
BS EN 12390-8 Depth of penetration of water under pressure.
Chalee, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009). “Predicting the chloride penetration of fly ash concrete in seawater.” Marine structures, Vol. 22, No.1, pp. 341-353.
DataFit (URL):http://www.curvefitting.com/.
Frazao, C., Camoes, A., Barros, J., and Goncalves, D.(2015). “Durability of steel fiber reinforced self-compacting concrete.” Construction and Building Materials, Vol. 80, pp. 155-166.
Gettu, R., Gardner D.R., Saldivar H., and Barragfin B.E.(2005). “Study of the distribution :and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
Gowers, K. R., and Millard, S. G. (1999). “Measurement of concrete resistivity for assessment of corrosion severity of steel using wenner technique” ACI Materials Journal , Vol. 96, No. 5, pp.536-541.
Jussara, T., Ardani, A. (2012). “Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete”, Federal Highway Administration.
Kim, J., McCarter, W. J., Suryanto, B., Nanukuttan, S., Basheer, P. A. M., and Chrisp, T. M. (2016). “Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based models” Cement and Concrete Composites, Vol.72, pp. 133-145.
Khan, K., and Amin, M. N. (2017) “Influence of fineness of volcanic ash and its blends with quarry dust and slag on compressive strength of mortar under different curing temperatures” Construction and Building Materials, Vol.154, pp. 514-528.
Lee, N. P., and Chisholm, D, H. (2005). “Reactive powder concrete” Study Report SR 146, BRANZ Ltd, Judgeford, New Zealand.
Leng, F., Feng, N., and Lu, X. (2000). “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace salg concrete.” Cement and Concrete Research, Vol. 30, pp. 989-992.
Life-365 (URL):http://www.life-365.org/.
Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
Mangat, P.S., and Molloy, B.T. (1994). “Prediction of long term chloride concentration in concrete.” Material and structures, Vol. 27, pp. 338-346.
Morris, W., Moreno, E.I., and SagiiCs, A.A.(1996). “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787.
Nokken, M., Boddy, A., Hooton, R.D., and Thomas, M.D.A. (2006). “Time dependent diffusion in concrete−three laboratory studies.” Cement and concrete research, Vol. 36, No. 1, pp. 200-207.
Pack, S. W., Jung, M. S., Song, H. W.,Kim, S. H., and Ann, K. Y. (2010). “Prediction of time dependent chloride transport in concrete structures exposed to a marine environment” Cement and Concrete Research, Vol. 40, pp. 302-312.
Peng, L., Zhiwu, Y., Zhaohui, L., Ying, C., and Xuaijie, L. (2016). “Predictive convection zone depth of chloride in concrete under chloride environment” Cement and concrete composites, Vol. 72, pp. 257-267.
Polder, R.B. (2001). “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
Ramezanianpour, A.A., Pilvar, A., Mahdikhani, M., and Moodi, F. (2011). “ Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength”, Construction and Building Materials, Vol. 25, pp. 2472–2479.
Safiuddin, Md., and Hearn, N.(2005). “Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete” Cement and Concrete Research, Vol. 35, pp1008-1013.
Sengul, O.(2014). “Use of electrical resistivity as an indicator for durability”, Construction and Building Materials, Pages 434–441.
Sherman, R.M., David, M.B., and Pfeifer, D.W. (1996). “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Song, S., Jiang, L.,Jiang, S., Yan,X., and Xu, N. (2018). “The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature” Construction and Building Materials, Vol. 164, pp. 663–671.
Song, H.W., Lee, C.H., and Ann, K.Y. (2008). “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and concrete composites, Vol. 30, pp. 113-121.
Stanish, K., Thomas, M. (2003). “The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients.” Cement and concrete research, Vol. 33, pp. 55-62.
Yimou, A., Chengbin, D.,and Faliang. (2008). “Concrete crack measurement by electrical resistivity” Journal of Southeast University, Vol. 38, No.2, pp.289-292.
Young, J.F., Mindess, S., and Darwin, D. (2002). Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., and Nieto, P. (1996). “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and concrete research , Vol. 26, pp. 93-100.
|