博碩士論文 106322020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:236 、訪客IP:18.118.162.180
姓名 顧凱文(Kai-Wen Ku)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用極值理論探討最大可能地震規模:以台灣為例
(Using extreme value theory to estimate the maximum credible earthquake in Taiwan)
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 以台灣地震開發的新地動數據庫★ 以離心模型試驗探討凹形邊坡之穩定性
★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析
★ 評估土壤液化最佳地動強度量值★ 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法
★ 考慮不同時間跨度下的台北土層液化機率★ 台灣本地土壤液化數據庫之應用
★ 以SPT-N結合Vs-N之經驗模型進行土壤液化評估★ 機率式地震危害度分析的解析解計算方法
★ 建立台灣CAVSTD-GMPE模型並應用於地震預警★ 土壤液化羅吉斯迴歸模型與台北及高雄的液化機率圖
★ 土壤液化評估法中之各參數的敏感度分析★ 五種土壤液化分析方法的假設統計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位於歐亞板塊與菲律賓海板塊之邊界上,由於板塊擠壓之緣故導致地震頻繁,有鑑於此,為了達到防災及減災之目的,在建築設計時需將地震因素納入考量,以降低地震所帶來的損傷及危害。
本文之研究目的為使用極值理論(Extreme Value Theory)來預估台灣各地區之最大可能規模,而預估最大可能規模主要分為定值方法(deterministic procedure)及機率性方法(probabilistic procedure),在過去經常使用定值方法來預估最大可能規模,其常用之預估方式為歷史紀錄之最大地震規模加0.5(此0.5為一個主觀的數值)或使用經驗公式,然而其存在著較高的不確定性因素,因此本研究選擇使用機率性方法中的極值理論,其採用數學統計之方式來預估最大可能規模,相較於定值方法而言,較為客觀。
本研究將台灣從1978年至2017年之地震歷史資料使用統計分析方法中之韋伯分佈(Weibull distribution)進行建模,其中使用卡方檢驗(Chi-square test)來分析韋伯分佈理論值與歷史觀察值間之擬合狀況,並搭配極值理論來分析台灣各區域之最大可能規模,最後將極值理論(極值理論中不同時間週期及不同的機率分佈)所預測之最大可能規模與定值方法中之歷史最大規模加0.3或加0.5所預估之規模值進行比較分析。
相對於加0.3法及加0.5法而言,本研究之極值理論可以直接評估各時間及不同百分位數下之規模,且其考慮到時間因素,而加0.3法及加0.5法未考慮時間因子,因此,本研究之極值理論應用於預測地震規模上較為客觀且實際。
摘要(英) Taiwan is located in the boundary of the Eurasian Plate and Philippine Sea Plate. Because of the plate extrusion, there is high seismicity rate over the past few years. Therefore, in order to achieve the purpose of disaster prevention and mitigation, seismic factors should be taken into account in the design of the building to reduce the damage and harm caused by the earthquake.
The purpose of this paper is to apply the Extreme Value Theory(EVT)to estimate the maximum credible magnitude of each seismic zone in Taiwan. The estimated maximum credible magnitude mainly included the deterministic procedure and probabilistic procedure. In the past, the deterministic procedure was often used to estimate the maximum credible magnitude. The commonly used method is the largest earthquake magnitude of the historical record plus 0.5. However, it is a subjective value, so there is high uncertainty. The extreme value analysis used in this study is a probabilistic procedure. The probabilistic procedure is more objective compared with the deterministic procedure because it used a more objective method to estimate the maximum credible magnitude.
This study collected the seismic data from 1978 to 2017 and used the Weibull distribution to model the observation. Furthermore, this study used the Chi-square test to test the hypothesis if the observation follows the Weibull distribution. Finally, the maximum credible magnitude calculated by the EVT(different time periods and different tail of probability distributions in extreme value theory)is compared with the value evaluated by the methods of maximum historical magnitude plus 0.3 and plus 0.5 in the deterministic procedure.
Compared with the plus 0.3 method and the plus 0.5 method, EVT can directly evaluate the different time periods and the magnitude of different percentiles. The most important is that the extreme value theory takes the time factor into account. While the traditional plus 0.3 method and the plus 0.5 method do not. Therefore, using EVT is more objective and practical for predicting the magnitude of earthquakes.
關鍵字(中) ★ 極值理論
★ 韋伯分布
★ 截斷分布
★ 最大可能規模
★ 卡方檢驗
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 極值理論(Extreme Value Theory) 3
2-2 韋伯分佈(Weibull distribution) 4
2-3 截斷分佈(Truncated distribution) 4
2-4 卡方檢驗(Chi-square test) 5
2-5 最大極限規模(Ultimate maximum magnitude) 6
2-6 最大可能規模(Maximum credible magnitude) 6
第三章 研究方法 14
3-1 資料建立 14
3-1-1 台灣地震資料來源 14
3-1-2 資料之輸入 14
3-1-3 模型之選用 15
3-2 使用Excel建立韋伯分佈 16
3-3 極值理論之分析 18
3-3-1 極值分佈之建立 18
3-3-2 極值分佈之應用 18
第四章 結果討論 25
4-1 韋伯分佈之建立 25
4-2 探討不同百分位數下之預測規模 25
4-2-1 百分位數為90%時之最大可能規模 25
4-2-2 百分位數為70%時之最大可能規模 26
4-2-3 百分位數為50%時之最大可能規模 26
4-3 與定值方法作比較 27
4-3-1歷史最大規模 27
4-3-2歷史最大規模加0.3(加0.3法) 27
4-3-3歷史最大規模加0.5(加0.5法) 28
第五章 結論與建議 57
5-1結論 57
5-2建議 58
參考文獻 60
參考文獻 [1] A. Kijko, Estimation of the Maximum Earthquake Magnitude. Pure and Applied Geophysics 2004;161(8):1655-1681.
[2] S. Kotz, S. Nadarajah, Extreme Value distributions: Theory and Applications. World Scientific; 2000.
[3] E. Gumbel, Statistics of Extreme. New York: Columbia University Press; 1958.
[4] S. Coles, An Introduction to Statistical Modeling of Extreme Value. Spring Science & Business Media; 2013.
[5] L. De Haan, A. Ferreira, Extreme Value Theory: An Introduction. Spring Science and Business; 2013.
[6] A.H.S. Ang, W.H. Tang, Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering (v. 1). New York: John Wiley & Sons, Inc; 2007.
[7] W. Weibull, A statistical distribution function of wide applicability. Journal of Applied Mechanics 1951;18:293-297.
[8] H. Rinne, The Weibull Distribution: A Handbook. CRC Press; 2008.
[9] A. Hayter, Probability and Statistics for Engineers and Scientists. Brooks/Cole: Cengage Learning; 2013.
[10] 彭鴻霖,「韋伯分佈可靠度評估技術」,可靠度技術手冊,(2000),第1-7頁。
[11] Y. Dodge, The Oxford Dictionary of Statistical Terms. OUP; 2003.
[12] K. Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine 1900;50(5):157-175.
[13] 松澤暢、平原和朗、山岡耕春,「地殼活動監測研究」,日本第197回地震預知連絡會,京都大學,京都市,日本(2012)。
[14] Z. Cagnan, G.B. Tanircan, Seismic hazard assessment for Cyprus. Journal of Seismology 2010;14(2):225-246.
[15] S.P. Villanova, J.F.B.D. Fonseca, Probabilistic seismic hazard assessment for Portugal. Bulletin of the Seismological Society of America 2007;97(5):1702-1717.
[16] A. Kijko, G. Graham, ‘‘Parametric-Historic’’ Procedure for Probabilistic Seismic Hazard Analysis. Part I: Assessment of Maximum Regional Magnitude mmax. Pure and Applied Geophysics 1998;152:413-442.
[17] V.Y. Sokolov, C.-H. Loh, K.-L. Wen, Empirical models for site-and region-dependent ground-motion parameters in the Taipei area: A unified approach. Earthquake Spectra 2001;17(2):313-331.
[18] R. Secanell, D. Bertil, C. Martin, X. Goula, T. Susagna, M. Tapia, P. Dominique, D. Carbon, J. Fleta, Probabilistic seismic hazard assessment of the Pyrenean region. Journal of Seismology 2008;12(3):323-341.
[19] V.L. Stevens, J.-P. Avouac, Determination of from Background Seismicity and Moment Conservation. Bulletin of the Seismological Society of America 2017;107(6):2578-2596.
[20] M. Zivcic, P. Suhadolc, F. Vaccari, Seismic Zoning of Slovenia Based on Deterministic Hazard Computations. Pure and Applied Geophysics 2000;157:171-184.
[21] C.A. Papaioannou, B.C. Papazachos, Time-independent and time-dependent seismic hazard in greece based on seismogenic sources. Bulletin of the Seismological Society of America 2000;90(1):22-33.
[22] A. Jin, K. Aki, Spatial and Temporal Correlation between Coda Q and Seismicity in China. Bulletin of the Seismological Society of America 1988;78:741-769.
[23] D.L. Wells, K.J. Coppersmith, New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America 1994;84(4):974-1002.
[24] K. Sieh, L. Jones, E. Hauksson, K. Hudnut, D. Eberhart-Phillips, T. Heaton, S. Hough, K. Hutton, H. Kanamori, A. Lilje, S. Lindvall, S.F. Mcgill, J. Mori, C. Rubin, J.A. Spotila, J. Stock, H.K. Thio, J. Treiman, B. Wernicke, J. Zachariasen, Near-field investigations of the Landers earthquake sequence, April to July 1992. Science 1993;260(5105):171-176.
[25] B. Fry, K.-F. Ma, Implications of the great 9.0 Tohoku-Oki earthquake on the understanding of natural hazard in Taiwan and New Zealand. Seismological Research Letters 2016;87(6):1254-1258.
[26] C. Frohlich, The nature of deep-focus earthquakes. Annual Review of Earth and Planetary Sciences 1989;17:227-254.
[27] K. Aki, Maximum likelihood estimate of b in the formula log(N) = a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, University of Tokyo 1965;43:237-239.
[28] K. Abe, Magnitude of large shallow earthquakes from 1904-1980. Physics of the Earth Planetary Interiors 1981;27:72-92.
[29] K. Abe, Complements to “Magnitudes of large shallow earthquakes from 1904-1980.” Physics of the Earth Planetary Interiors 1984;34.
[30] V.F. Pisarenko, A. Sornette, D. Sornette, M.V. Rodkin, New Approach to the Characterization of and of the Tail of the Distribution of Earthquake Magnitudes. Pure and Applied Geophysics 2008;165(5):847-888.
[31] V.F. Pisarenko, D. Sornette, M.V. Rodkin, Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923-2007). Earth, Planets and Space 2010;62(7):567-578.
[32] M. Holschneider, G. Zöller, S. Hainzl, Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg-Richter model. Bulletin of the Seismological Society of America 2011;101(4):1649-1659.
[33] G. Zöller, M. Holschneider, The earthquake history in a fault zone tells us almost nothing about . Seismological Research Letters 2016;87(1):132-137.
[34] P. Cooke, Statistical Inference for Bounds of Random Variables. Biometrika 1979;66:367-374.
[35] R. Page, Aftershocks and Microaftershocks. Bulletin of the Seismological Society of America 1968;58:1131-1168.
[36] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (9th ed.). New York: Dover Publications; 1970.
[37] Y.J. Wang, C.H. Chan, Y.T. Lee, K.F. Ma, J.B.H. Shyu, R.J. Rau, C.T. Cheng, Probabilistic Seismic Hazard Assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 2016;27(3):325-340.
指導教授 王瑞斌 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明