參考文獻 |
[1] 賴勁愷 (2018),「顆粒及水流條件對沖積扇坡度及堆積型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[2] 王俊凱 (2017),「不同水砂比之顆粒流對於渠道回淤及沖積扇堆積型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[3] 陳瑞遠 (2016),「不同水砂比及渠道坡度對沖積扇型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[4] 吳侑謙 (2015),「顆粒特性及水流條件對顆粒體運動及淤積型態之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[5] 曾文毅 (2014),「不同輸砂濃度及基準水面條件下之沖積扇形態分析」,碩士論文,國立中央大學土木工程研究所,中壢。
[6] 鐘敦倫,謝洪 (2014),「泥石流災害及防治技術」,四川科學技術出版社,中國四川。
[7] 吳俊銓 (2012),「山洪濁流形成沖積扇之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[8] 王景平 (2005),「松鶴地區土石流災害歷史之探討」,中華水土保持學報,36(2): 203-213 。
[9] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司,台北。
[10] 蔡元芳 (1999),「土石流扇狀地形狀特性之研究」,碩士論文,國
立成功大學水利及海洋工程研究所,台南。
[11] Banteah R. (2010), “Fluvial form in modern continental sedimentary basins: distributive fluvial systems.”, Geology 38 (1), 39–42.
[12] Beaty C.B. (1963), “Origin of alluvial fans, White Mountains, California and Nevada.” Ann. Assoc. Am. Geogr., 53, 516–535.
[13] Bull W. B. (1964), “Geomorphology of segmented alluvial fans in Western Fresno County, California”, Tech. Rep.
[14] Blair T.C., McPherson J.G. (2009), “Processes and forms of alluvial fans.” In: Parsons, A., Abrahams, A. (Eds.), Geomorphology of Desert Environments. Springer, Netherlands, pp. 413–467.
[15] Blair T.C. (2002), “Alluvial-fan sedimentation from a glacial-outburst flood, Lone Pine, California, and contrasts with meteorological flood deposits.” Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. IAS Special Publication, pp. 113–140.
[16] Blair T.C., McPherson J.G. (1998). “Recentdebris-flowprocessesand resultant formand facies of the Dolomite alluvial fan, Owens Valley, California.” J. Sediment. Res. 68 (5), 800–818.
[17] Blair T.C., McPherson J.G. (1994), “Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages.” J. Sediment. Res. A64, 450–489.
[18] Blikra L.H., Nemec W. (1998), “Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record.” Sedimentology 45 (5), 909–960.
[19] Blissenbach E. (1954), “Geology of alluvial fans in semiarid regions.” Geol. Soc. Am. Bull., 65, 175–190.
[20] Clarke L. (2015), “Experimental alluvial fans: Advances in understanding of fan dynamics and processes” Geomorphology 244 135–145.
[21] Clarke L., Quine T.A., Nicholas A. (2010), “An experimental investigation of autogenic behaviour during alluvial fan evolution.” Geomorphology 115 278–285.
[22] Davies T.R., McSaveney M.J., Clarkson P.J. (2003), “Anthropic aggradation of the Waiho River, Westland, New Zealand: microscale modelling.” Earth Surf. Process. Landf. 28, 209–218.
[23] De Haas T., Woerkom T.V. (2016) , “Bed scour by debris flows: experimental investigation of effects of debris-flow composition”, Earth Surface Processes and Landforms, 10.1002/esp.3963.
[24] de Haas T., Ventra D., Carbonneau P.E., Kleinhans M.G. (2014), “Debris-flow dominance of alluvial fans masked by runoff reworking and weathering” Geomorphology217 165–181.
[25] Gómez-Villar A., García-Ruiz J. (2000). “Surface sediment characteristics and present dynamics in alluvial fans of the central Spanish Pyrenees.” Geomorphology 34 (34), 127–144.
[26] Guerit L., M´etivier F., Devauchelle O., Lajeunesse E., Barrier L. (2014), “Laboratory alluvial fans in one dimension” Physical Reciew E 90 022203.
[27] Hamilton P. B., Strom K., Hoyal D. C. J. D. (2013), “Autogenic incision-backfilling cycles and lobe formation during the growth of alluvial fans with supercritical distributaries” the journal of the International Association of Sedimentologists, Sedimentology 60, 1498–1525.
[28] Hartley A.J., Weissmann G.S., Nichols G.J., Warwick G.L. (2010), “Large distributive fluvial systems: characteristics, distribution, and controls on development.” J. Sediment. Res. 80 (2), 167–183.
[29] Hooke R., Rohrer W.L. (1979), “Geometry of alluvial fans: effect on discharge and sediment size.” Earth Surf. Process. Landf. 4, 147–166.
[30] Hooke R. (1968). “Model geology: prototype and laboratory streams: discussion.” Geol. Soc. Am. Bull. 79, 391–394.
[31] Hooke R. (1967), “Processes on arid region alluvial fans.” J. Geol. 75, 438–460.
[32] Johnson A.M. (1984), “Debris flow.” Slope instability, D. Brunsden and D. B. Prior, eds., John Wiley & Sons, Ltd., Chichester, England, 257-361.
[33] Nicholas A. P., Clarke L., Quine T. A. (2009), “A numerical modelling and experimental study of flow width dynamics on alluvial fans” Earth Surf. Process. Landforms 34, 1985–1993.
[34] Parker G. (1999), “Progress in the Modeling of Alluvial Fans.” Journal of Hydraulic Research 37, 805-825.
[35] Parker G., Paola C., Whipple K. X., Mohrig D. (1998), “Alluvial fans formwd by channelized fluvial and sheet flow.” Journal of hydraulic engineering / October.
[36] Schumm S. A. (1977), “The fluvial system.”, John Wiley & Sons, Inc., New York, N.Y.
[37] Suwa H., and Okuda S. (1983), “Deposition of debris flows on a fan surface, Mt. Yakedake, Japan.” Zeit. Geomorph. N. F., 46, 79-101.
[38] Volker H., Wasklewicz T., Ellis M. (2007), “A topographic fingerprint to distinguish alluvial fan formative processes.” Geomorphology 88 (12), 34–45.
[39] Whipple K. X., Parker G., Paola C., Mohrig D. (1998), “Channel Dynamics, Sediment Transport, and the Slope of Alluvial Fans: Experimental Study”, The Journal of Geology, 1998, volume 106, p. 677–693.
[40] Whipple, K. X., and Dunne, T. (1992), "The influence of debris-flow rheology on fan morphology, Owens Valley, California." Geol. Soc. Am. Bull., 104,887-900.
[41] Weissmann G. ,Hartley A., Nichols G., Scuderi L., Olson M., Buehler H., Banteah R. (2010), “Fluvial form in modern continental sedimentary basins: distributive fluvial systems.” Geology 38 (1), 39–42.
|