參考文獻 |
陳依涵,2016:發展地面資料同化方法以改善都卜勒雷達變分分析系統之分析與預報能力。國立中央大學大氣物理所碩士論文,1–95。
黃熠程,2017: 四維變分資料同化系統與衛星資料整合以重建台灣與周圍地區的高解析度氣象場。國立中央大學大氣物理所碩士論文,1-91。
吳英璋,2019:對IBM_VDRAS四維變分資料同化系統的改進以及在探討複雜地形上劇烈降雨過程的應用:北台灣午後對流個案分析。
Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 1805–1824.
Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829–840.
Byrd, R. H., P. Lu and J. Nocedal., 1995: A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing, 16, 1190–1208.
Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The implementation of the ice-phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015–1038.
Chen, X. C., K. Zhao, J. Z. Sun, B. W. Zhou, and W. C. Lee, 2016: Assimilating surface observations in a four-dimensional Variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33(10), 1106–1119.
Crook, N. A., and J. Sun, 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol., 19, 888–898.
Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294
Fujita, T. T., 1978: Manual of downburst identification for project Nimrod. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp. [NTIS PB-286048.]
Ge, G., J. Gao , and M. Xue, 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 1075–1092.
Heistermann, M., Jacobi, S., and Pfaff, T.: Technical Note: An open source library for processing weather radar data (wradlib), Hydrol. Earth Syst. Sci., 17, 863-871.
Helmus, J.J. and Collis, S.M., 2016. The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 4(1), p.e25.
Hu, M., and M. Xue, 2007a: Analysis and prediction of 8 May 2003 Oklahoma City tornadic thunderstorm and embedded tornado using ARPS with assimilation of WSR-88D radar data. Preprints, 22nd Conf. on Weather Analysis and Forecasting/ 18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 1B.4. [Available online at http:// ams.confex.com/ams/pdfpapers/123683.pdf.]
——, ——, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.
——, ——, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721.
Kawabata J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Wakazuki,2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data assimilation system, J. Meteor. Soc. Japan,85, 255-276.
——, T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 1911–1931.
Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Math. Programming, 45, 503–528.
Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather Research and Forecasting model. Mon. Wea. Rev., 138, 796–817.
——, ——, and ——, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF Model. Mon. Wea. Rev., 140, 3936–3955.
Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatidudes. John Wiley & Sons, 407 pp.
Marshall, J. S.; Palmer, W. M. 1948: The distribution of raindrops with size. Journal of Meteorology, 5 (4), 165–166.
Mohd-Yusof, J., 1997: Combined immersed boundary/b-spline methods for simulations of flow in complex geometry. Center for Turbulence Research, Annual Research Briefs, NASA Ames/Stanford University, 317–327.
Morales, J.L. and J. Nocedal., 2011: L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software (TOMS), 38, 1-4.
Panofsky, H. A., J. A. Dutton, 1984: Atmospheric turbulence: Models and methods for engineering applications. Wiley. 397 p.
Rotunno, R., and J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, longlived squall lines. J. Atmos. Sci., 45, 463–485.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duha, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 11 pp.
Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Weat. Rev., 139, 3446–3468.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.
——, and ——, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.
——, and ——, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
——, M. Chen, and Y. Wang, 2010: A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715–1735.
——, and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245–2264.
Tai, S.-L., Y.-C. Liou, J. Sun, and S.-F. Chang, 2017: The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Wea. Rev., 145, 289–306.
Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Twodimensional convection in non-constant shear: A model for mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739–762.
Tong, M. and Xue, M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev.133, 1789-1807.
Tripoli, G. J., and W. R. Cotton, 1981: The use of ice–liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102.
Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quanti-tative precipitation nowcasting with a local ensemble trans-form Kalman filter radar data assimilation system: Observingsystem simulation experiments. Tellus, 66A, 21 804.
Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593–623.
Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble trans-
form Kalman filter radar data assimilation system: Observing
system simulation experiments. Tellus,66A, 21 804
Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 2224–2244.
Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 2565–2578.
Weisman, M. L., 1992: The role of convectively generated rearinflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847.
——, 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670.
Zhu, C., R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 550–560.
Zou, X., 1995: Tangent linear and adjoint of ‘‘on–off’’ processes and their feasibility for use in four-dimensional variational data assimilation. Tellus, 49A, (1), 3–31.
|