博碩士論文 106621017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:235 、訪客IP:18.221.102.63
姓名 郭人維(Ren-Wei Kuo)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 高時空融合影像在氣膠光學厚度反演之改進與空氣品質偵測之應用
(The Improvement of AOD Retrieval and Application to High Temporal and Spatial Fused Imagery for Air Quality Monitor)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠光學厚度 (Aerosol Optical Depth, AOD) 為表示空氣汙染程度的指標之一,透過衛星觀測能有效偵測大範圍的氣膠光學厚度。部分氣膠具有短生命週期以及區域性汙染的特性,然而以現有技術來說並無單一衛星能同時提供高空間且高時間解析度的資訊。透過時空影像融合法將具有不同優勢的影像進行融合,能獲得高空間及高時間解析度的資訊,如自適應時空反射率融合模式 (Spatial Temporal Adaptive Reflectance Fusion Model , STARFM)。然而STARFM僅適用於地表的相關訊息,無法提供大氣之訊息。為了獲取高時空解析度之氣膠資訊,本研究針對地球同步衛星向日葵八號 (Himawari-8) 以及繞極軌道衛星大地衛星8號 (Landsat-8) 之影像進行融合,並改進STARFM,進而得到高時空解析度的大氣層頂反射率影像,應用於氣膠光學厚度之反演。另外,本篇研究使用同時輻射率定法 (Simultaneous Radiation Solution, SRS) 進行氣膠光學厚度之反演,但該方法並不適用於高地表反射率的地區。為了突破此限制,本研究亦對同時輻射率定法進行修正,再結合影像融合得到的影像,反演具高時空解析度之氣膠光學厚度資訊,以掌握具有短生命週期且地區性汙染的氣膠特性。
研究結果應用於三個在台灣的大氣汙染事件中。反演結果在空間分佈上與NASA/MODIS 暗物法 (Dark Target) 3公里解析度氣膠光學厚度產品相當一致。透過AERONET (AErosol RObotic NETwork) 的資料進行驗證後,顯示高時空解析度SRS反演之氣膠光學厚度於三個個案中分別有63%、75%以及80%的反演結果落於期望誤差之內。與個別的AERONET測站比較下來相對誤差也大多小於國際上標準的20%。然而在部分特定區域中,反演結果相對較差。初步分析後發現主要原因來自地表反射率以及雙向反射特性的掌握不夠準確。若能建立各種地表種類下的雙向反射分佈函數 (Bidirectional Reflectance Distribution Function, BRDF),將可能提升高時空解析度SRS反演氣膠光學厚度的精準度。
摘要(英) Aerosol Optical Depth (AOD) is an important indicator of air quality. Through satellite observation, we can obtain comprehensive information on AOD in broad spatial distribution. However, since the characteristics of aerosols are both short-lived and regional, and that getting high spatial and temporal AOD information by single satellite observation is not feasible as well. Adopting the spatial-temporal image fusion technique, like Spatial-Temporal Adaptive Reflectance Fusion Model (STARFM), becomes one of the desirable approaches to deal with the dilemma.
Nevertheless, this model was designed for image fusion on surface reflectance data. Hence, revising the STARM model to retain the information from the atmosphere is necessary if we want to apply it on air quality monitoring. Moreover, we use an algorithm called Simultaneous Radiation Solution (SRS) to retrieve AOD. To correct the limitation of SRS, which is only applicable for low surface reflectance area, we modify the SRS in this research and further apply it on a higher surface reflectance area. In short, we get high spatial and temporal AOD information through STARFM and SRS.
After applying the new high spatial and temporal algorithm on three air pollution cases in Taiwan, the spatial distribution of the results correspond with the MODIS Dark Target AOD product in 3km resolution. We further use the AERONET data to validate our retrieval, and it shows that there are 63%, 75% and 80% of retrieved AOD for each case located in expected error respectively. However, a significant error appears in some specific areas. By preliminary analysis, we assume that the error comes from the wrong estimation of surface reflectance and poor handling on bidirectional reflectance distribution function (BRDF) in this research. If the BRDF for different land cover types is constructed, the retrieval of AOD should be improved.
關鍵字(中) ★ 高時空影像融合
★ 自適應時空反射率融合模式
★ 氣膠光學厚度
★ 同時輻射率定法
關鍵字(英) ★ Image Fusion
★ Spatial Temporal Adaptive Reflectance Fusion Model
★ Aerosol Optical Depth
★ Simultaneous Radiation Solution
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.2.1高時空影像融合 4
1.2.2氣膠光學厚度反演 6
1.3研究動機與目的 10
第二章 研究資料與模式 11
2.1 衛星觀測資料 11
2.1.1 Landsat-8 11
2.1.2 Himawari-8 13
2.1.3 MODIS 15
2.2 地面觀測資料 17
2.2.1 AERONET 17
2.2.2 環保署空氣品質監測網 18
2.2.3 氣象局自動(局屬)測站 18
2.3 輻射傳導模式 18
第三章 研究方法 19
3.1資料處理 19
3.1.1幾何校正 19
3.1.2地物種類分類 21
3.2 高時空影像融合 22
3.2.1 光譜權重 23
3.2.2 時間權重 24
3.2.3 距離權重 24
3.3 氣膠光學厚度反演 26
3.3.1 輻射傳輸原理 26
3.3.2 同時輻射率定法 27
3.3.3 地表反射率 28
3.3.4 高地表反射率地區與強散射型氣膠斜率之修正 29
3.3.5 查找表之建立 31
3.3.6氣膠光學厚度之計算 33
3.4 研究架構與流程 35
第四章 結果與討論 36
4.1 高時空影像融合 36
4.2 氣膠光學厚度反演之應用―個案分析 39
4.2.1 個案一:農廢燃燒事件 39
4.2.2 個案二:二次氣膠生成事件 45
4.2.3 個案三:境外汙染殘留結合本地汙染之事件 49
4.3 個案總結與誤差來源之探討 54
4.3.1 個案總結 54
4.3.2 誤差來源之探討 56
第五章 結論與展望 60
5.1 結論 60
5.2 展望 62
參考文獻 63
參考文獻 1.Bacour, C., & Bréon, F. M. 2005. "Variability of biome reflectance directional signatures as seen by POLDER." Remote Sensing of Environment, 98(1), 80-95.
2.Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., & Holben, B. N. 2002. "Validation of MODIS aerosol optical depth retrieval over land." Geophysical research letters, 29(12), MOD2-1.
3.EPA. "Effect of Common Air Pollution" Accessed May 07, 2019, from https://www3.epa.gov/airnow/health-prof/common-air-pollutants-2011-lo.pdf.
4.Gao, F., Masek, J., Schwaller, M., & Hall, F. 2006. "On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance." IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-2218.
5.Goddard Space Flight Center. "Aerosol Robotic Network (AERONET) Homepage." Accessed April 03, 2019, from https://aeronet.gsfc.nasa.gov/.
6.Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., ... & Tsay, S. C. 2013. "Enhanced Deep Blue aerosol retrieval algorithm: The second generation." Journal of Geophysical Research: Atmospheres, 118(16), 9296-9315.
7.Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. 2006. "Deep blue retrievals of Asian aerosol properties during ACE-Asia." IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3180-3195.
8.Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. 2004. "Aerosol properties over bright-reflecting source regions." IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569.
9.Huang, C. Y., Ho, H. C., & Lin, T. H. (2018). "Improving the image fusion procedure for high-spatiotemporal aerosol optical depth retrieval: a case study of urban area in Taiwan." Journal of Applied Remote Sensing, 12(4), 042605.
10.IPCC. 2013. "Summary for Policymarkers." In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovermental Panel on Climate Change, edited by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.Boschung, A. Nauels, Y.Xia, V.Bex and P.M. Midgley, 1-30. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
11.Japan Meteorological Agency. 2015. "Himawari-8/9 Himawari Standard Data User′s Guide." Version 1.2, pp14-15.
12.Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. 1997. "Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer." Journal of Geophysical Research: Atmospheres, 102(D14), 17051-17067.
13.Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. 1997. "The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol." IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
14.Kokhanovsky, A. A., Mayer, B., & Rozanov, V. V. 2005. "A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems." Atmospheric Research, 73(1-2), 37-43.
15.Kokhanovsky, A. A. and G. Leeuw (Ed.). 2009. "Satellite aerosol remote sensing over land." Berlin: Springer.
16.Learn by Marketing. "K-means Clustering- What it is and How it Works." Accessed November 14, 2018, from http://www.learnbymarketing.com/methods/k-means-clustering/.
17.Levy, R. C., Remer, L. A., & Dubovik, O. 2007. "Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land." Journal of Geophysical Research: Atmospheres, 112(D13).
18.Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. 2007. "Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance." Journal of Geophysical Research: Atmospheres, 112(D13).
19.Matsuoka, M., Takagi, M., Akatsuka, S., Honda, R., Nonomura, A., Moriya, H., & Yoshioka, H. 2016. "Bidirectional reflectance modeling of the geostationary sensor HIMAWARI-8/AHI using a kernel-driven BRDF model." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 3.
20.MODIS Land Surface Reflectance Science Computing Facility. "Home." Accessed May 02, 2019, from http://6s.ltdri.org/index.html.
21.NASA/MODIS. "Specifications." Accessed April 03, 2019, from https://modis.gsfc.nasa.gov/about/specifications.php.
22.NASA/USGS. "Landsat Science." Accessed May 07, 2019, from https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/.
23.Noguchi, K., Richter, A., Rozanov, V., Rozanov, A., Burrows, J. P., Irie, H., & Kita, K. 2014. "Effect of surface BRDF of various land cover types on geostationary observations of tropospheric NO 2." Atmospheric Measurement Techniques, 7(10), 3497-3508.
24.Sifakis, N., & Deschamps, P. Y. (1992). "Mapping of air pollution using SPOT satellite data." Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.
25.Shettigara, V. K. 1992. "A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set." Photogram. Enggineer. Remote Sen., 58, 561-567.
26.SPACEFLIGHT101 Space News and Beyond. "Himawari-8 & 9." Accessed April 03, 2019, from http://spaceflight101.com/spacecraft/himawari-8-and-9/.
27.Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. 1988. "Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data." Journal of Geophysical Research: Atmospheres, 93(D12), 15955-15964.
28.Tanré, D., Kaufman, Y. J., Herman, M., & Mattoo, S. 1997. "Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances." Journal of Geophysical Research: Atmospheres, 102(D14), 16971-16988.
29.USGS. "Landsat Missions" Accessed April 03, 2019, from https://www.usgs.gov/land-resources/nli/landsat/landsat-satellite-missions?qt-science_support_page_related_con=2#qt-science_support_page_related_con。
30.USGS. 2015. "LANDSAT 8 (L8) DATA USERS HANDBOOK." Version 1.0 pp.61-62.
31.Vermote, E. F. T. D., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. 2006. "Second simulation of a satellite signal in the solar spectrum-vector (6SV)." 6S User Guide Version, 3, 1-55.
32.Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcette, J. J. 1997. "Second simulation of the satellite signal in the solar spectrum, 6S: An overview." IEEE transactions on geoscience and remote sensing, 35(3), 675-686.
33.Wikipedia. "Aqua (satellite)." Accessed April 18, 2019, from https://en.wikipedia.org/wiki/Aqua_(satellite).
34.Wikipedia. "Terra (satellite)." Accessed April 18, 2019, from https://en.wikipedia.org/wiki/Terra_(satellite).
35.Zhuge, X. Y., Zou, X., & Wang, Y. 2017. "A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems." IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6111-6119.
36.中央氣象局。"最新天氣圖。" 2017年3月4日,取自https://www.cwb.gov.tw/V7/forecast/fcst/I04.htm。
37.何炫騏,2018。"A TOA-reflectance-based Spatial-temporal Image Fusion Method for Aerosol Optical Depth Retrieval." 碩士,土木工程學系碩士論文,國立中央大學。
38.孫達旻,2018。 "同時輻射率定法在向日葵八號氣膠光學厚度反演之應用。" 碩士,遙測科技碩士學位學程,國立中央大學。
39.環保署。"空氣品質監測網。" 2019年4月20日,取自https://taqm.epa.gov.tw/taqm/tw/AqiHistory.aspx。
指導教授 劉振榮 林唐煌(Gin-Rong Liu Tang-Huang Lin) 審核日期 2019-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明