博碩士論文 106621013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:18.219.89.148
姓名 劉允元(Yun-Yuan Liu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用海氣耦合模式HWRF探討尼伯特颱風(2016)侵台路徑與強度演變的動力過程
(Dynamic Investigations of Track and Intensity Evolution Associated with Typhoon Nepartak (2016) Approaching Taiwan with Ocean-coupled Model HWRF)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在前人研究中,作業用區域海氣耦合模式Hurricane Weather Research and Forecasting (HWRF)已被證實具有模擬颱風活動的能力。本文即採用HWRF,模擬侵台 颱風尼伯特(2016),嘗試探討其在不同實驗組中路徑偏折與強度差異的動力因素。實驗首先採用不同物理參數化組合方案驗證模式預報能力,結果顯示模擬結果皆落在各國決定性預報範圍之中。後續實驗採用預報表現最佳的實驗組作為控制實驗組,並從模擬結果中由不同的登陸地點及強度變化選取比較實驗組,比較不同物理參數化實驗組模擬之動力差異。在強度差異上,使用動量與角動量趨勢收支分析發現隨著颱風三維風場強度的不同,可由底層向內傳送的較大角動量值也有所不同,造成底層切向風速增強量值不一。底層的入流亦會進一步影響眼牆附近向上對流的強度,致使可向上傳送的較大角動量有所不同,使隨眼牆上升周圍的切向風速有所不同;在路徑差異上,各物理參數化實驗組模擬路徑差異在開放洋面上主要差異透過位渦趨勢與不對稱量分析,其主要導因於水平平流項的差異,亦即颱風與背景駛流疊加的強風速區所主導,背景駛流差異又與副熱帶太平洋高壓強度不同有關聯。至較接近陸地時,垂直平流及非絕熱加熱項才逐漸有較明顯作用。耦合與未耦合實驗比較中,耦合實驗可反應較真實海洋溫度反饋,從而限制潛熱通量並獲得較為真實的颱風強度模擬。耦合與未耦合實驗在路徑上的差異透過位渦趨勢不對稱量分析可發現亦是由水平平流項所主導。地形移除實驗比較部分,透過位渦趨勢不對稱量分析可發現移除地形將使整體通過臺灣駛流風場增大、風向亦較少偏轉,並反映在水平平流的差異中,使颱風通過臺灣時路徑較少北轉與減速。
摘要(英) In past researches, operational coupled model Hurricane Weather Research and Forecasting (HWRF) have been demonstrated its capability of typhoon simulation. In this research, we applied HWRF to simulated invaded typhoon Nepartak (2016). Investigating the dynamic factors within difference in intensity and track between different experiments. At first, 8 different physics scheme combinations have been selected to demonstrate the
capability of typhoon (tc) simulation. The result shows that the predictions of HWRF are overall captured tc activity. According to the result, the most accurate simulation will be chosen to be CTRL experiment, and as the comparative experiments, different westbound track and intensity simulation will be chosen. For the intensity difference part, we applied the momentum and angular momentum (AM) budget analysis. Through the budget analysis and the 3-dimension wind speed difference in different experiments, the amounts of larger angular
momentum inward transportation will also be different, this effect will influence the wind speed intensification inside the bottom layer. Strong inward motion in the bottom will further enhance vertical convection near RMW, therefore, the upward transportation of angular momentum will be different; For the track difference part, we applied the potential vorticity (PV) budget to analyze it. While tc is moving upon the open ocean, horizontal advection will dominate the translation speed and direction of each experiment, which can be understood as
composition of background steering and typhoon circulation. Once the typhoon approach Taiwan, vertical advection and diabetic heating then become more important for typhoon translation speed and toward direction.
This research has further analyzed the coupled and uncoupled model comparison and the effect of Taiwan topography. As coupled model could provide the sst contains the typhoon induced sst cooling, it will get more accuracy simulation of intensity. Trough the PV budget analysis, The track difference between coupled and uncoupled model have been proved that is also induced by horizontal advection. For the effect of Taiwan topography, once the height of terrain replaced to 0, PV budget analysis demonstrated that the speed of steering flow will grow while the deflection will reduced. This phenomenon will let Typhoon penetrate Taiwan without deflection and deceleration.
關鍵字(中) ★ 海氣耦合區域模式
★ 位渦收支
★ 動量與角動量收支
關鍵字(英) ★ Air-sea coupled regional model
★ Potential vorticity (PV) budget
★ momentum and angular momentum budget
論文目次 摘 要 i
ABSTRACT ii
致 謝 iii
目 錄 iv
表 目 錄 vi
圖 目 錄 vii
符 號 說 明 xii
一、 前言 P1
二、 模式設定與分析方法 P4
2-1、HWRF 模式 P4
2-2、POM 海洋環流模式 P4
2-3、使用資料來源 P5
2-4、尼伯特颱風(2016)簡述 P5
2-5、實驗設計 P6
2-6、分析方法 P7
2-6-1、動量與角動量趨勢收支 P7
2-6-2、位渦趨勢收支 P8
三、 HWRF 物理參數化系集模擬結果 P9
3-1、路徑及強度 P9
3-2、綜觀環境與流場 P10
3-3、降雨特徵比較 P10
四、 近臺路徑差異的動力分析 P12
4-1、環流結構 P12
4-2、角動量與動量趨勢收支 P14
4-3、位渦結構與趨勢收支以不對稱量分析 P17
五、 耦合與未耦合實驗比較 P19
六、 移除台灣地形高度比較 P21
七、 結論及未來展望 P23
參 考 文 獻 P26
附 錄 P30
附 表 P33
附 圖 P34
參考文獻 Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317–1336, https://doi.org/10.1175/ 1520- 0469(2002)059,1317:RBPVTA.2.0.CO;2
Charney, J.G. and A. Eliassen, 1964: On the Growth of the Hurricane Depression. J. Atmos. Sci., 21, 68–75, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
Chen, S. S, W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave ocean models: Results from CBLAST-hurricane. J. Atmos. Sci., 70, 3198–3215
Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550
Chen, X., M. Xue, and J. Fang, 2018: Rapid Intensification of Typhoon Mujigae (2015) under Different Sea Surface Temperatures: Structural Changes Leading to Rapid Intensification. J. Atmos. Sci., 75, 4313–4335, https://doi.org/10.1175/JAS-D-18-0017.1
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.
Colby, F.P., 2019: The Spread of Tropical Storm Tracks in Three Versions of NCEP’s Global Ensemble Model: Focus on Hurricane Edouard (2014). Wea. Forecasting, 34,577–586, https://doi.org/10.1175/WAF-D-18-0153.1
Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stianssnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306
Emanuel, K.A., 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci., 43, 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
Fiorino, M. and R.L. Elsberry, 1989: Some Aspects of Vortex Structure Related to Tropical Cyclone Motion. J. Atmos. Sci., 46, 975–990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2
Gopalakrishnan, S.G., F. Marks, J.A. Zhang, X. Zhang, J. Bao, and V. Tallapragada, 2013: A Study of the Impacts of Vertical Diffusion on the Structure and Intensity of the Tropical Cyclones Using the High-Resolution HWRF System. J. Atmos. Sci., 70, 524–541, https://doi.org/10.1175/JAS-D-11-0340.1
Holland, G.J., 1983: Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect. J. Atmos. Sci., 40, 328–342, https://doi.org/10.1175/15200469(1983)040<0328
:TCMEIP>2.0.CO;2
Huang, C., C. Huang, and W.C. Skamarock, 2019: Track Deflection of Typhoon Nesat (2017) as Realized by Multiresolution Simulations of a Global Model. Mon. Wea. Rev.,147, 1593–1613, https://doi.org/10.1175/MWR-D-18-0275.1
Huang, Y., M.T. Montgomery, and C. Wu, 2012: Concentric Eyewall Formation in Typhoon Sinlaku (2008). Part II: Axisymmetric Dynamical Processes. J. Atmos. Sci., 69,662–674, https://doi.org/10.1175/JAS-D-11-0114.1
Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576– 3594
Lee, C.-Y, and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 1927–1944, doi:10.1175/MWR-D-13-00122.1.
Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, (2018): Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard 2014. J. Atmos. Sci., 75, 275–295, https://doi.org/10.1175/JAS-D-17-0171.1.
Li, D.‐Y., & Huang, C.‐Y. 2018: The influences of orography and ocean on track of Typhoon Megi (2016) past Taiwan as identified by HWRF. Journal of Geophysical Research: Atmospheres, 123, 11,492– 11,517.
https://doi.org/10.1029/2018JD029379
Lin, I.‐I., Wu, C.‐C., Pun, I.‐F., and Ko, D.‐S. 2008: Upper ocean thermal structure and the western North Pacific category‐5 typhoons. Part I: Ocean features and category‐5 typhoon′s intensification, Mon. Weather Rev., 136, 3288– 3306.
Melhauser, C., F. Zhang, Y. Weng, Y. Jin, H. Jin, and Q. Zhao, 2017: A Multiple-Model Convection-Permitting Ensemble Examination of the Probabilistic Prediction of Tropical Cyclones: Hurricanes Sandy (2012) and Edouard (2014). Wea. Forecasting, 32, 665–688, https://doi.org/10.1175/WAF-D-16-0082.1
Miyamoto, Y. and T. Takemi, 2015: A Triggering Mechanism for Rapid Intensification of Tropical Cyclones. J. Atmos. Sci., 72, 2666–2681, https://doi.org/10.1175/JAS-D-14-0193.1
Persing J, Montgomery MT, McWilliams J, Smith RK. 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. 13: 12299–12341.
Smith, R.K. and M.T. Montgomery, 2015: Toward Clarity on Understanding Tropical Cyclone Intensification. J. Atmos. Sci., 72, 3020– 3031, https://doi.org/10.1175/JAS-D-15-0017.1
Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 2081–2086.
Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293–308.
Srinivas, C. V., Mohan, G. M., Naidu, C. V., Baskaran, R., and Venkatraman, B. 2016: Impact of air‐sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3‐D ocean model coupled to ARW, J. Geophys. Res. Atmos., 121, 9400– 9421
Stern, D.P. and D.S. Nolan, 2011: On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones. J. Atmos. Sci., 68, 2073–2094, https://doi.org/10.1175/2011JAS3682.1
Sun, J., and L.-Y. Oey 2015: The influence of the ocean on Typhoon Nuri 2008: Mon. Weather Rev., 143, 4493–4 513
Sun, Y., Z. Zhong, and W. Lu, 2015: Sensitivity of Tropical Cyclone Feedback on the Intensity of the Western Pacific Subtropical High to Microphysics Schemes. J. Atmos. Sci., 72, 1346–1368, https://doi.org/10.1175/JAS-D-14-0051.1
Tallapragada, V., Bernardet, L., Biswas, M. K., Ginis, I., Kwon, Y., Liu, Q., et al. 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific Documentation, NCAR/TN-522+STR. http://dx.doi.org/10.5065/D6ZP44B5
Tallapragada, V., 2018: Recent advancements and future plans for advancing global tropical cyclone predictions at NCEP, Seminar at Central Weather Bureau, Taipei, Taiwan, June 21, 2018, ppt, p5
Wu, C. C., C. Y. Lee, and I-I Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562– 3578.
Wu, L. and B. Wang, 2000: A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion. Mon. Wea. Rev., 128, 1899– 1911, https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
Wu, L., B. Wang, and S. A. Braun, 2005: Impact of air–sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 3299–3314.
Wu, L., J. Liang, and C.-C. Wu 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis, J. Atmos. Sci., 68, 2222–2235.
Yablonsky, R.M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015: Description and Analysis of the Ocean Component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF).
J. Atmos. Oceanic Technol., 32, 144– 163,
https://doi.org/10.1175/JTECH-D-14-00063.1
Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92–107.
Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523–2535.
指導教授 黃清勇 嚴明鉦(Ching-Yuang Huang Ming-Cheng Yen) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明