參考文獻 |
Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317–1336, https://doi.org/10.1175/ 1520- 0469(2002)059,1317:RBPVTA.2.0.CO;2
Charney, J.G. and A. Eliassen, 1964: On the Growth of the Hurricane Depression. J. Atmos. Sci., 21, 68–75, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
Chen, S. S, W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave ocean models: Results from CBLAST-hurricane. J. Atmos. Sci., 70, 3198–3215
Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550
Chen, X., M. Xue, and J. Fang, 2018: Rapid Intensification of Typhoon Mujigae (2015) under Different Sea Surface Temperatures: Structural Changes Leading to Rapid Intensification. J. Atmos. Sci., 75, 4313–4335, https://doi.org/10.1175/JAS-D-18-0017.1
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.
Colby, F.P., 2019: The Spread of Tropical Storm Tracks in Three Versions of NCEP’s Global Ensemble Model: Focus on Hurricane Edouard (2014). Wea. Forecasting, 34,577–586, https://doi.org/10.1175/WAF-D-18-0153.1
Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stianssnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306
Emanuel, K.A., 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci., 43, 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
Fiorino, M. and R.L. Elsberry, 1989: Some Aspects of Vortex Structure Related to Tropical Cyclone Motion. J. Atmos. Sci., 46, 975–990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2
Gopalakrishnan, S.G., F. Marks, J.A. Zhang, X. Zhang, J. Bao, and V. Tallapragada, 2013: A Study of the Impacts of Vertical Diffusion on the Structure and Intensity of the Tropical Cyclones Using the High-Resolution HWRF System. J. Atmos. Sci., 70, 524–541, https://doi.org/10.1175/JAS-D-11-0340.1
Holland, G.J., 1983: Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect. J. Atmos. Sci., 40, 328–342, https://doi.org/10.1175/15200469(1983)040<0328
:TCMEIP>2.0.CO;2
Huang, C., C. Huang, and W.C. Skamarock, 2019: Track Deflection of Typhoon Nesat (2017) as Realized by Multiresolution Simulations of a Global Model. Mon. Wea. Rev.,147, 1593–1613, https://doi.org/10.1175/MWR-D-18-0275.1
Huang, Y., M.T. Montgomery, and C. Wu, 2012: Concentric Eyewall Formation in Typhoon Sinlaku (2008). Part II: Axisymmetric Dynamical Processes. J. Atmos. Sci., 69,662–674, https://doi.org/10.1175/JAS-D-11-0114.1
Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576– 3594
Lee, C.-Y, and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 1927–1944, doi:10.1175/MWR-D-13-00122.1.
Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, (2018): Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard 2014. J. Atmos. Sci., 75, 275–295, https://doi.org/10.1175/JAS-D-17-0171.1.
Li, D.‐Y., & Huang, C.‐Y. 2018: The influences of orography and ocean on track of Typhoon Megi (2016) past Taiwan as identified by HWRF. Journal of Geophysical Research: Atmospheres, 123, 11,492– 11,517.
https://doi.org/10.1029/2018JD029379
Lin, I.‐I., Wu, C.‐C., Pun, I.‐F., and Ko, D.‐S. 2008: Upper ocean thermal structure and the western North Pacific category‐5 typhoons. Part I: Ocean features and category‐5 typhoon′s intensification, Mon. Weather Rev., 136, 3288– 3306.
Melhauser, C., F. Zhang, Y. Weng, Y. Jin, H. Jin, and Q. Zhao, 2017: A Multiple-Model Convection-Permitting Ensemble Examination of the Probabilistic Prediction of Tropical Cyclones: Hurricanes Sandy (2012) and Edouard (2014). Wea. Forecasting, 32, 665–688, https://doi.org/10.1175/WAF-D-16-0082.1
Miyamoto, Y. and T. Takemi, 2015: A Triggering Mechanism for Rapid Intensification of Tropical Cyclones. J. Atmos. Sci., 72, 2666–2681, https://doi.org/10.1175/JAS-D-14-0193.1
Persing J, Montgomery MT, McWilliams J, Smith RK. 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. 13: 12299–12341.
Smith, R.K. and M.T. Montgomery, 2015: Toward Clarity on Understanding Tropical Cyclone Intensification. J. Atmos. Sci., 72, 3020– 3031, https://doi.org/10.1175/JAS-D-15-0017.1
Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 2081–2086.
Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293–308.
Srinivas, C. V., Mohan, G. M., Naidu, C. V., Baskaran, R., and Venkatraman, B. 2016: Impact of air‐sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3‐D ocean model coupled to ARW, J. Geophys. Res. Atmos., 121, 9400– 9421
Stern, D.P. and D.S. Nolan, 2011: On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones. J. Atmos. Sci., 68, 2073–2094, https://doi.org/10.1175/2011JAS3682.1
Sun, J., and L.-Y. Oey 2015: The influence of the ocean on Typhoon Nuri 2008: Mon. Weather Rev., 143, 4493–4 513
Sun, Y., Z. Zhong, and W. Lu, 2015: Sensitivity of Tropical Cyclone Feedback on the Intensity of the Western Pacific Subtropical High to Microphysics Schemes. J. Atmos. Sci., 72, 1346–1368, https://doi.org/10.1175/JAS-D-14-0051.1
Tallapragada, V., Bernardet, L., Biswas, M. K., Ginis, I., Kwon, Y., Liu, Q., et al. 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific Documentation, NCAR/TN-522+STR. http://dx.doi.org/10.5065/D6ZP44B5
Tallapragada, V., 2018: Recent advancements and future plans for advancing global tropical cyclone predictions at NCEP, Seminar at Central Weather Bureau, Taipei, Taiwan, June 21, 2018, ppt, p5
Wu, C. C., C. Y. Lee, and I-I Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562– 3578.
Wu, L. and B. Wang, 2000: A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion. Mon. Wea. Rev., 128, 1899– 1911, https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
Wu, L., B. Wang, and S. A. Braun, 2005: Impact of air–sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 3299–3314.
Wu, L., J. Liang, and C.-C. Wu 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis, J. Atmos. Sci., 68, 2222–2235.
Yablonsky, R.M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015: Description and Analysis of the Ocean Component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF).
J. Atmos. Oceanic Technol., 32, 144– 163,
https://doi.org/10.1175/JTECH-D-14-00063.1
Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92–107.
Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523–2535.
|