以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:228 、訪客IP:3.147.27.71
姓名 阮子齊(Tzu-Chi Juan) 查詢紙本館藏 畢業系所 大氣科學學系 論文名稱 利用高解析度全球模式FV3GFS探討侵台颱風瑪莉亞(2018)受地形影響之路徑偏折
(Track deflection of Typhoon Maria (2018) past Taiwan under Topographical Influences as Investigated by High-Resolution Global Model FV3GFS)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 下一代全球預報模式FV3GFS的可縮放的網格提供了一個能增加解析度又兼顧運算效率的方法。本研究挑選了瑪莉亞颱風(2018)並使用可縮放網格提高至7公里進行模擬,發現此模式確實有能力模擬颱風並且優於各國機構預報,尤其是在路徑方面,移動速度與偏折幾乎完全掌握,降水部分也與觀測接近。
基於FV3GFS提供了一個良好的模擬結果,本研究以此結果針對瑪莉亞颱風與台灣地形之關聯進行相關動力探討。將台灣地形效應移除後,發現在無台灣地形下颱風路徑並沒有偏折現象,中心風速變化部分也不明顯。因此可得出台灣地形對颱風造成的兩個主要影響,一為使其路徑往北偏折,二為使颱風中心風速增加。
對此本研究以動量和角動量收支診斷來討論其風速的變化,發現在颱風逐漸靠近台灣時,瑪莉亞颱風於邊界層以下會產生更強的徑向入流並平流外圍較大的角動量至中心,使眼牆附近切向風速增加,但同時外圍約1度以外也會有較大的負徑向平流渦流產生,使風速減弱。路徑部分則以渦度收支診斷來討論其偏折,發現颱風路徑偏折為水平平流項主導,其餘各項加總為減速作用,將地形移除後則移動方向與移速都較為一致。與850百帕高度之水平風場做對應後,可知颱風在台灣西北側外海時,外圍環流受地形阻擋下產生的繞流,此繞流會造成駛流的改變使颱風路徑往北偏轉,中心風速增強也同樣為此繞流將外圍較大的角動量向內平流所致。
摘要(英) Global model FV3GFS, which has been chosen as the Next Generation Global Prediction System, provides a “grid stretching” technique which could not only increase resolution in the specific area but also keep its computational efficiency at the same time. In this study, we ap-plied this technique to simulate typhoon Maria (2018) with 7 km resolution. The results revealed that FV3GFS had capability of better typhoon track forecast. Compared to other agencies, translation speed and typhoon track deflection could be captured by the model well.
Based on the previous results, we took advantages of FV3GFS to investigate the dynam-ical processes between Taiwan terrain and typhoon Maria. After removing terrain in Taiwan, we found that the northern deflection and the change of wind speed vanished. The results suggested that the terrain might lead to change in the path of typhoon and increase in wind speed around the radius of maximum wind (RMW).
In this study, momentum and angular momentum (AM) tendency budget was preformed to verify the wind speed change, and we found that the strong inflow occurred below the planetary boundary layer, which transported the larger AM into the center and then enhanced the tangen-tial wind near eyewall. Meanwhile, outer part of the typhoon produced negative radial eddy advection, which slowed down the wind speed. Furthermore, vorticity tendency budget was performed to verify the track deflection. During the northern deflection of the typhoon track, we found that the northern deflection of the typhoon track was mainly caused by the horizontal ad-vection, and the sum of other terms decelerated the translation speed of the typhoon. Through these serial analyses, it turned out that the northern deflection of the typhoon track was primarily caused by terrain blocking, which produced a split flow to change the steering flow when ty-phoon was passing through the northwest of Taiwan ocean. The intensification near the eyewall was resulted from the larger AM advection, which was also caused by the split flow from outer part of the typhoon.
關鍵字(中) ★ FV3GFS
★ 地形效應
★ 角動量收支
★ 渦度收支關鍵字(英) ★ FV3GFS
★ terrain effect
★ angular momentum budget
★ vorticity budget論文目次 摘要 ............................................................................................................................................i
Abstract ......................................................................................................................................ii
目錄 .........................................................................................................................................iii
圖目錄 ......................................................................................................................................iv
符號說明 ................................................................................................................................vii
一、 前言.....................................................................................................................................1
二、 模式簡介與設定.................................................................................................................4
三、 資料與方法.........................................................................................................................6
3-1 動量趨勢收支分析.....................................................................................................6
3-2 角動量趨勢收支分析.................................................................................................7
3-3 渦度趨勢收支分析.....................................................................................................8
四、 個案與實驗設計.................................................................................................................9
4-1 瑪莉亞颱風.................................................................................................................9
4-2 實驗設計.....................................................................................................................9
五、 模擬結果...........................................................................................................................11
5-1 不同時間初始場之敏感度實驗...............................................................................11
5-2 路徑與強度...............................................................................................................11
5-3 颱風流場...................................................................................................................12
5-4 降雨量.......................................................................................................................13
六、 動力診斷...........................................................................................................................14
6-1 角動量趨勢收支診斷...............................................................................................14
6-2 動量趨勢收支診斷...................................................................................................15
6-3 渦度趨勢收支診斷...................................................................................................18
6-4 台灣地形在颱風路徑偏折中的角色.......................................................................19
七、 結論...................................................................................................................................22
參考文獻...................................................................................................................................25
附圖...........................................................................................................................................28
參考文獻 Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity
tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317–1336
Chan, K. T., and J. C. Chan, 2013: Angular momentum transports and synoptic flow patterns
associated with tropical cyclone size change. Mon. Wea. Rev., 141, 3985-4007.
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of
tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944
Chen, X., N. Andronova, B. Van Leer, J. E. Penner, J. P. Boyd, C. Jablonowski, and S.-J. Lin,
2013: A control-volume model of the compressible Euler equations with a vertical
Lagrangian coordinate. Mon. Wea. Rev., 141, 2526-2544.
Gao, K., L. Harris, J. H. Chen, S. J. Lin, and A. Hazelton, 2019: Improving AGCM hurricane
structure with two‐way nesting. J. Adv. Model Earth Sy., 11, 278-292.
Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the
cubed-sphere grid. Mon. Wea. Rev., 141, 283-306.
Harris, L. M., S.-J. Lin, and C. Tu, 2016: High-resolution climate simulations using GFDL
HiRAM with a stretched global grid. J. Climate, 29, 4293-4314.
Hazelton, A. T., L. Harris, and S.-J. Lin, 2018: Evaluation of tropical cyclone structure
forecasts in a high-resolution version of the multiscale GFDL fvGFS model. Wea.
Forecasting, 33, 419-442.
Huang, C.-Y., C.-H. Huang, and W. C. Skamarock, 2019: Track deflection of typhoon nesat
(2017) as realized by multi-resolution simulations of a global model. Mon. Wea. Rev.
Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016: On the upstream track
deflection of tropical cyclones past a mountain range: Idealized experiments. J. Atmos.
Sci., 73, 3157-3180.
Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-H. Hsu, 2017: Influences of large-scale
flow variations on the track evolution of Typhoons morakot (2009) and megi (2010):
Simulations with a global variable-resolution Model. Mon. Wea. Rev., 145, 1691-1716.
Huang, Y., C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track
deflection. Mon. Wea. Rev., 139, 1708–1727
Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon
Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615.
Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada,
(2018): Azimuthal distribution of deep convection, environmental factors, and tropical
cyclone rapid intensification: A perspective from HWRF ensemble forecasts of hurricane
Edouard 2014. J. Atmos. Sci., 75, 275–295
Li, D.‐Y., & Huang, C.‐Y. 2018: The influences of orography and ocean on track of Typhoon
Megi (2016) past Taiwan as identified by HWRF. J. Geophys. Res., 123, 11,492– 11,517.
Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models.
Mon. Wea. Rev., 132, 2293-2307.
Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport
schemes. Mon. Wea. Rev., 124, 2046-2070.
Lin, S. J., 1997: A finite‐volume integration method for computing pressure gradient force in
general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123,
1749-1762.
Lin, S. J., and R. B. Rood, 1997: An explicit flux‐form semi‐Lagrangian shallow‐water model
on the sphere. Quart. J. Roy. Meteor. Soc., 123, 2477-2498.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a
cloud model. , J. Clim. Appl. Meteorol. 22, 1065-1092.
Lin, Y., J. Han, D.W. Hamilton, and C. Huang, 1999: Orographic influence on a drifting
cyclone. J. Atmos. Sci., 56, 534–562
Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids.
J. Comput. Phys., 227, 55-78.
Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a
hurricane weather research and forecasting simulation of hurricane Earl (2010).
Quart. J. Roy. Meteor. Soc., 143, 293-308.
Stern, D.P. and D.S. Nolan, 2011: On the vertical decay rate of the maximum tangential winds in Tropical Cyclones. J. Atmos. Sci., 68, 2073–2094
Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical
cyclone motion. Mon. Wea. Rev., 128, 1899-1911.
Wu, L., J. Liang, and C.-C. Wu 2011: Monsoonal influence on Typhoon Morakot (2009). Part
I: Observational analysis, J. Atmos. Sci., 68, 2222–2235.
Xie, J.-H., 2017: 地形作用對西行熱帶氣旋之影響: 理想個案數值模擬, National Central
University.
Zhang, D.-L., Y. Liu, and M. Yau, 2001: A multiscale numerical study of Hurricane Andrew
(1992). Part IV: Unbalanced flows. Mon. wea. rev., 129, 92-107.指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2019-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare