參考文獻 |
Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129, 2884–2903.
Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270.
Bender, M., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965–3989.
Bender, M. A., T. P. Marchok, C. R. Sampson, J. A. Knaff, and M. J. Morin, 2017: Impact of storm size on prediction of storm track and intensity utilizing the 2016 operational GFDL hurricane model. Wea. Forecasting, 32, 1491–1508.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129, 420–436.
Cha, D.-H., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964–986.
Chang, S. W., and R. A. Anthes, 1978: Numerical simulations of the ocean’s nonlinear, baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480.
Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc, 88, 311-317.
Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-Hurricane, J. Atmos. Sci., 70, 3198-3215.
Chen, S. S., and M. Curcic, 2016: Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Model., 103, 161–176.
Chen, Y., and C. Snyder, 2007. Assimilating Vortex Position with an Ensemble Kalman Filter. Mon. Wea. Rev., 135, 1828–1845.
Chou, K.-H., and C.-C. Wu, 2008. Typhoon Initialization in a Mesoscale Model—Combination of the Bogused Vortex and the Dropwindsonde Data in DOTSTAR. Mon. Wea. Rev., 136, 865–879.
Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.
Cummings, J., A., 2005. Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3583–3604.
Curcic, M., 2015. Explicit air-sea momentum exchange in coupled atmosphere-wave-ocean modeling of tropical cyclones. Ph.D. dissertation, University of Miami, 189 pp.
D’Asaro, E., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 1405–1418.
Davidson, N. E., and Coauthors, 2014. ACCESS-TC: Vortex Specification, 4DVAR Initialization, Verification, and Structure Diagnostics. Mon. Wea. Rev., 142, 1265–1289.
Donelan, M.A., M. Curcic, S.S. Chen, and A.K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23.
Dudhia, J., 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 49–50.
Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715–721.
Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.
Halliwell, G. R., Jr., L. K. Shay, S. D. Jacob, O. M. Smedstad, and E. W. Uhlhorn, 2008: Improving ocean model initialization for coupled tropical cyclone forecast models using GODAE nowcasts. Mon. Wea. Rev., 136, 2576–2591.
Hamill, T. M. and Snyder, C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev., 128, 2905-2919.
——, J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011a. Global Ensemble Predictions of 2009’s Tropical Cyclones Initialized with an Ensemble Kalman Filter. Mon. Wea. Rev., 139, 668–688.
——, ——, D. T. Kleist, M. Fiorino, and S. G. Benjamin, 2011b. Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Wea. Rev., 139, 3243–3247.
Hendricks, and Coauthors, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction Systemfor Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650–663.
Hill, C., C. DeLuca, V. Balaji, M. Suarez, and A. da Silva, 2004: Architecture of the earth system modeling framework. Comput. Sci. Eng., 6, 18–28.
Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213–229.
Hong, S-Y., J. Dudhia, and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hormann, V., L. R. Centurioni, L. Rainville, C. M. Lee, and L. J. Braasch, 2014: Response of upper ocean currents to Typhoon Fanapi. Geophys. Res. Lett., 41, 3995–4003
Huang, C.-Y., I.-H. Wu, and L. Feng, 2016: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. J. Geophys. Res. Atmos., 121, 12,647–12,676.
Hunt, H. R., Kostelich, E. J. and Szunyogh, I. 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D. 230, 112–126.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. Wea. Forecasting, 30, 793–808.
Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 4188–4207.
Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014. An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252–270.
Judt, F., S. S. Chen, and J. Berner, 2016a: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles, Quart. J. Roy. Meteor. Soc., 142, 43-57. doi:10.1002/qj.2626.
Judt, F., and S. S. Chen, 2016b: Predictability and Dynamics of Tropical Cyclone Rapid Intensification Deduced from High-Resolution Stochastic Ensembles, Mon. Wea. Rev., 144, 4395–4420. doi: 10.1175/MWR-D-15-0413.1.
Kain, J., 2004: The Kain–Fritsch convective parameterization, An update. J. Appl. Meteor., 43, 170–181.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.
Kawabata, T., M. Kunii, K. Bessho, T. Nakazawa, N. Kohno, Y. Honda, K. Sawada, 2012: Reanalysis and Reforecast of Typhoon Vera (1959) Using a Mesoscale Four-Dimensional Variational Assimilation System. J. Meteor. Soc. Japan, 90, 467-491.
Kieu, C. and Z. Moon, 2016: Hurricane Intensity Predictability. Bull. Amer. Meteor. Soc., 97, 1847-1857.
Kleist, D. T., 2011. Assimilation of tropical cyclone advisory minimum sea level pressure in the NCEP Global Data Assimilation System. Wea. Forecasting, 26, 1085–1091.
Kunii, M. and T. Miyoshi, 2012: Including Uncertainties of Sea Surface Temperature in an Ensemble Kalman Filter: A Case Study of Typhoon Sinlaku (2008). Wea. Forecasting, 27, 1586–1597, https://doi.org/10.1175/WAF-D-11-00136.1
Kunii, M., 2015. Assimilation of tropical cyclone track and wind radius data with an ensemble Kalman filter. Wea. Forecasting, 30, 1050–1063.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993. An Initialization Scheme of Hurricane Models by Vortex Specification. Mon. Wea. Rev., 121, 2030–2045.
——, ——, R. E. Tuleya, and R. J. Ross, 1995. Improvements in the GFDL Hurricane Prediction System. Mon. Wea. Rev., 123, 2791–2801.
——, R. E. Tuleya, and M. A. Bender, 1998. The GFDL Hurricane Prediction System and Its Performance in the 1995 Hurricane Season. Mon. Wea. Rev., 126, 1306–1322.
Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 65–78.
Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.
Le Dimet, F.-X. and Talagrand, O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A. 38, 97-110.
Lea, D., I. Mirouze, M. J. Martin, R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere–land–ocean–sea ice model. Mon. Wea. Rev., 143, 4678–4694.
Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere-wave-ocean models and observations, J. Atmos. Sci., 69, 3576-3594.
Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere-ocean model, Mon. Wea. Rev., 142, 1927-1944.
Leslie, L. M., and G. J. Holland, 1995. On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101–110.
Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10,019–10,026.
Lin, K. J., S. C., Yang, and S. S. Chen, 2018: Reducing TC position uncertainty in an ensemble data assimilation and prediction system: A case study of typhoon Fanapi (2010). Wea. Forecasting, 33, 561–582.
Lin, I. I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649.
——, C.-C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 3288–3306.
——, I. F. Pun, and C. C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 3744–3757.
Liou, C.-S., and K. D. Sashegyi, 2011. On the initialization of tropical cyclones with a three-dimensional variational analysis. Nat. Hazards, 63, 1375–1391.
Liou, Y.-C., Wang, T.-C. C., and Huang, P.-Y., 2016: The inland eyewall reintensification of Typhoon Fanapi (2010) documented from an observational perspective using multiple-Doppler radar and surface measurements. Mon. Wea. Rev, 144, 241–261.
Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017. GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223–239.
Ma, Z., J. Fei, L. Liu, X. Huang, and X. Cheng, 2013: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air–sea interaction conditions. Mon. Wea. Rev., 141, 1285–1303.
Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801.
Miyamoto,Y., and T. Takemi, 2013:Atransition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112–129, doi:10.1175/JAS-D-11-0285.1.
Mrvaljevic, R. K., and Coauthors, 2013. Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., 40, 316–321.
Navarro, E. L., and G. J. Hakim, 2014. Storm-Centered Ensemble Data Assimilation for Tropical Cyclones. Mon. Wea. Rev., 142, 2309–2320.
Nehrkorn, T., B. K. Woods, R. N. Hoffman, and T. Aulign, 2015: Correcting for position errors in variational data assimilation. Mon. Wea. Rev., 143, 1368–1381.
Nguyen, H., and Y.-L. Chen, 2011. High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463–1491.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.
Poterjoy, J., and F. Zhang, 2011. Dynamics and Structure of Forecast Error Covariance in the Core of a Developing Hurricane. J. Atmos. Sci., 68, 1586–1606.
——, ——, and T. Weng, 2014. The effects of sampling errors on the EnKF assimilation of inner-core hurricane observations. Mon. Wea. Rev., 142, 1609–1630.
——, ——, 2014. Inter-comparison and coupling of ensemble and variational data assimilation approaches for the analysis and forecasting of Hurricane Karl (2010). Mon. Wea. Rev., 142, 3347-3364.
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.
Pu, Z.-X., and S. A. Braun, 2001. Evaluation of Bogus Vortex Techniques Using Four-Dimensional Variational Data Assimilation. Mon. Wea. Rev., 129, 2023–2039.
Pun, I., I. Lin, C. Lien, and C. Wu, 2018: Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Mon. Wea. Rev., 146, 661–677.
Rappaport, E. N., and Coauthors, 2009. Advances and Challenges at the National Hurricane Center. Wea. Forecasting, 24, 395–419.
Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44–70.
Sasaki, Y. 1958. An objective analysis based on the variational method. J. Meteorol. Soc. Jpn. 36, 77-88.
Shay, L. K., 2010: Air-sea interactions in tropical cyclones. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific Publishing, 93–132.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M. and co-authors, 2008: A description of the advanced research WRF Version 3, NCAR technical note, NCAR/TN- 475 + STR. 125 pp.
Sluka, T., S. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752–759.
Sraj, I., M. Iskandarani, A. Srinivasan, W.C. Thacker, J. Winokur, A. Alexanderian, C. Lee, S.S. Chen, and O.M. Knio, 2013: Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi. Mon. Wea. Rev., 141, 2347–2367.
Tao, W.-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Peters-Lidard, and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 1–16
Tenerelli, J.E., and S. S. Chen, 2001: High-resolution simulations of Hurricane Floyd using MM5 with vortex-following mesh refinement, AMS 18th Conference on Weather Analysis and Forecasting and the 14th Conference on Numerical Weather Prediction, 18, J52-J54.
Torn, R. D., G. J. Hakim, and C. Snyder, 2006. Boundary conditions for limited-area Ensemble Kalman Filters. Mon. Wea. Rev., 134, 2490–2502.
——, and G. J. Hakim, 2009. Ensemble Data Assimilation Applied to RAINEX Observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 2817–2829.
Tallapragada, V., and Coauthors, 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 scientific documentation. NCAR Development Testbed Center Rep., 105 pp.
Ueno, M., 1989. Operational bogussing and numerical prediction of typhoon in JMA. JMA/NDP Tech. Rep. 28, 48 pp.
Wang, Y. and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes - a review. Meteorology and Atmospheric Physics, 87 (4), 257–278.
Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118, 3292–3308.
Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software design description for the HYbrid Coordinate Ocean Model (HYCOM), version 2.2. Tech. Rep. NRL/MR/7320—09-9166, NRL, Stennis Space Center, MS, 157 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a494779.pdf.
Webb, E. K., 1970: Profile relationships: The log-linear range and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67–90.
Weng, Y., and F. Zhang, 2012. Assimilating Airborne Doppler Radar Observations with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization and Prediction: Katrina (2005). Mon. Wea. Rev., 140, 841–859.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.
Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787–790.
——, C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578.
——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of Tropical Cyclone Track and Structure Based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806–3822.
——, W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153–167.
Wu, T.-C., H. Liu, S. J. Majumdar, C. S. Velden, and J. L. Anderson, 2014. Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 142, 49–71.
Yang, M.-J., Y.-C. Wu, and Y.-C. Liou, 2018: The study of inland eyewall reconstruction of Typhoon Fanapi (2010) using numerical experiments and vorticity budget analyses. J. Geophys. Res. Atmos., 123, 9604–9623.
Yang, S.-C., K.-J. Lin, T. Miyoshi, and E. Kalnay, 2013. Improving the spin-up of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus, 65A, 20804.
——, S.-H. Chen, S.-Y. Chen, C.-Y. Huang and C.-S. Chen, 2014: Evaluating the impact of the COSMIC-RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.
Yano, J. and K. Emanuel, 1991: An Improved Model of the Equatorial Troposphere and Its Coupling with the Stratosphere. J. Atmos. Sci., 48, 377–389, https://doi.org/10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2
Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.
Zhang, F., Y. Weng, J. a. Sippel, Z. Meng, and C. H. Bishop, 2009. Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 137, 2105–2125.
——, ——, J. F. Gamache, and F. D. Marks, 2011. Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.
Zou, X., and Q. Xiao, 2000. Studies on the Initialization and Simulation of a Mature Hurricane Using a Variational Bogus Data Assimilation Scheme. J. Atmos. Sci., 57, 836–860.
|