博碩士論文 101681001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:239 、訪客IP:18.118.162.180
姓名 林冠任(Kuan-Jen Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 系集資料同化系統與高解析度海氣耦合模式於 颱風預報之應用
(Application of ensemble data assimilation system and high-resolution coupled model in Tropical Cyclone prediction)
相關論文
★ 利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響★ 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
★ LETKF加速就位法於颱風同化預報之應用★ 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)★ 利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例
★ OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析
★ 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究★ LAPS 短時(0-6小時)系集降水機率預報之評估與應用
★ 利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用★ 雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究
★ 基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究★ 系集轉換卡爾曼漸進式平滑器在資料同化之應用
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 利用正交向量改善系集卡爾曼濾波器之系集空間及其對同化與預報之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文之主要研究目的為建構耦合系集颱風同化與預報系統,並以此探索耦合資料同化與預報在颱風應用中之相關科學議題。本研究中所建構之耦合系集資料同化與預報系統是由高解析度海氣耦合模式UWIN-CM (Unified Wave INterface-Coupled Model)與系集資料同化系統LETKF (Local Ensemble Transform Kalman Filter)所組成,在UWINCM-LETKF之架構下針對2010年的Fanapi颱風進行個案研究,以探討颱風資料同化與耦合預報中的問題。
從颱風系集同化系統中颱風位置不確定性的問題切入,我們先展示了颱風位置不確定性對同化系統表現的負面影響。接著,我們使用了前人研究中提出的颱風中心同化架構(TC-Centered assimilation framework, TCC)作為解方,並首次將此方法使用於真實颱風研究中。實驗結果顯示,使用TCC架構下,分析場中之颱風結構與觀測資料變得更為接近。而以此分析場進行預報後發現,此方法可以緩解預報初期模式的動力不平衡問題,但對颱風強度預報的影響較不一致,包含了較好的中心氣壓預報與預報風速過強的問題。
接著我們以UIWN-CM的系集預報來探討海氣交互作用對颱風預報之影響。實驗結果顯示了加入海氣交互作用後模擬的颱風變小、減弱與更為不對稱,同時路徑有北偏的情況。分析海洋與大氣變數間的耦合相關性讓我們對耦合模式的特性能有更深刻的了解,並對接下來進行耦合資料同化有很大的幫助。
最後,我們則對本研究中建立的UWINCM-LETKF系統進行檢驗,我們先討論在大氣的同化中使用耦合模式的影響。實驗結果與位於相同位置的海洋與大氣觀測比較後發現,使用耦合模式得到的背景場在TCC的架構下,海洋與大氣在交界面的增量較為一致。此結果除顯示了進行耦合同化的潛力,同時也告訴我們不只在大氣的同化中需要使用TCC架構,在海洋的同化上也應該使用。而我們也在此架構下進行耦合資料同化的實驗,嘗試使用大氣的溫度修正海溫,初步的研究結果顯示雖然在不同位置有不同的結果,但整體來說在颱風後側的海溫多能得到改善。
摘要(英) The main goal of this dissertation is to construct a coupled ensemble TC assimilation and prediction system to explore the challengess in regional coupled data assimilation for TC analysis and prediction. The coupled ensemble assimilation and prediction system is constructed by coupling a high-resolution coupled model UWIN-CM (Unified Wave Interface-Coupled model) and an ensemble data assimilation system LETKF (Local Ensemble Transform Kalman Filter). Under the UWINCM-LETKF framework, issues in TC ensemble data assimilation (EDA) and coupled model prediction are explored with a real TC study of Fanapi (2010).
The first part investigates the problem of TC position uncertainty in current ensemble TC assimilation system. We have demonstrated the detrimental impact of TC position uncertainty on ensemble TC assimilation. The TC-centered (TCC) assimilation framework is adopted as a solution and evaluated with a real case study of Fanapi. Results show that with the TCC framework, the analyzed TC structure is in better agreement with independent observations. The improved TC analysis has alleviated the model shock during the early period of forecast, but the impact on intensity prediction is mixed with a better minimum sea level pressure and overestimated peak winds.
We also examined the impact of two-way TC-ocean interaction on TC prediction. based on the coupled ensemble forecast from UWIN-CM. Results have demonstrated that TC-ocean coupled effect has led to weaker, smaller, more asymmetry TC, and have a northward track deflection. Analyze the coupled correlation between atmosphere and ocean variables provided us some insight of coupled model behavior in preparation for performing coupled data assimilation.
In the end, the capability of UWINCM-LETKF on TC analysis is evaluated. The impact of adopting a coupled model in the forecast-analysis cycle during the atmosphere data assimilation is first discussed. Verified against the collocated atmosphere and ocean observations, the SST and near-surface temperature innovation can be more consistent when using the coupled model forecast (background field) under the TCC framework. This result has highlighted the potential of strongly coupled data assimilation, and also suggest that not only the TC assimilation but also the ocean analysis update should be performed under the TC-centered framework. The preliminary result of strongly coupled data assimilation, in which atmosphere observation is used to update the HYCOM temperature, has shown the mixed result, but the improvement can be identified in rear side of TC.
關鍵字(中) ★ 資料同化
★ 颱風預報
★ 海氣耦合模式
★ 系集卡爾曼濾波器
關鍵字(英) ★ Data assimilation
★ TC predictionn
★ air-sea coupled model
★ Ensemble Kalman Filter
論文目次 摘要 i
Abstract iii
Acknowledgement v
Contents vi
List of figures viii
List of tables xvii
Chapter 1. Introduction 1
1.1 Background and literature review 1
1.1.1 Vortex Initialization and assimilation 3
1.1.2 TC-Ocean interaction 7
1.1.3 Coupled data assimilation 10
1.2 Motivation and objectives 11
Chapter 2. Model and method 14
2.1 Unified Wave INterface-Coupled Model (UWIN-CM) 14
2.1.1 Atmosphere component – WRF model 14
2.1.2 Ocean wave component - UMWM 15
2.1.3 Ocean circulation component – HYCOM 15
2.1.4 Exchange fields 15
2.2 Local Ensemble Transform Kalman Filter (LETKF) 16
2.3 TC-Centered ensemble data assimilation framework 18
Chapter 3. Case overview - Typhoon Fanapi (2010) 20
3.1 Fanapi overview 20
3.2 ITOP field campaign 21
Chapter 4. Reducing TC position uncertainty in an ensemble data assimilation and prediction system 23
4.1 Introductory remarks 23
4.2 Impact of TC position uncertainty under idealized framework 23
4.2.1 Experiment setup 23
4.2.2 Result and discussion 25
4.3 Application and evaluation of WRF-TCC-LETKF 27
4.3.1 Model, assimilation and experimental setup 27
4.3.2 Analysis and forecast result 30
4.4 Summary and discussion 40
Chapter 5. Investigating the impact of TC-ocean interaction on TC prediction using the UWIN-CM ensemble forecast 44
5.1 Introductory remarks 44
5.2 Experimental setup 44
5.3 Results 46
5.3.1 Impact of two-way air-sea interaction on TC prediction 46
5.3.2 Impact on atmospheric variability 54
5.3.3 Atmosphere induced ocean variability and coupled covariance 55
5.3.4 Impact of initial ocean perturbation 57
5.4 Summary and discussion 59
Chapter 6. Coupled data assimilation system UWINCM-LETKF 61
6.1 Introductory remarks 61
6.2 Experimental setup 61
6.3 Ocean analysis update in UWINCM-LETKF 63
6.4 Experiment results 64
6.4.1 Atmosphere analysis 64
6.4.2 Ocean analysis update through coupled data assimilation 66
6.5 Summary and discussion 69
Chapter 7. Overall conclusion and discussion 72
References 75
Tables 87
Figures 91
參考文獻 Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129, 2884–2903.
Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270.
Bender, M., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965–3989.
Bender, M. A., T. P. Marchok, C. R. Sampson, J. A. Knaff, and M. J. Morin, 2017: Impact of storm size on prediction of storm track and intensity utilizing the 2016 operational GFDL hurricane model. Wea. Forecasting, 32, 1491–1508.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129, 420–436.
Cha, D.-H., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964–986.
Chang, S. W., and R. A. Anthes, 1978: Numerical simulations of the ocean’s nonlinear, baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480.
Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc, 88, 311-317.
Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-Hurricane, J. Atmos. Sci., 70, 3198-3215.
Chen, S. S., and M. Curcic, 2016: Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Model., 103, 161–176.
Chen, Y., and C. Snyder, 2007. Assimilating Vortex Position with an Ensemble Kalman Filter. Mon. Wea. Rev., 135, 1828–1845.
Chou, K.-H., and C.-C. Wu, 2008. Typhoon Initialization in a Mesoscale Model—Combination of the Bogused Vortex and the Dropwindsonde Data in DOTSTAR. Mon. Wea. Rev., 136, 865–879.
Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.
Cummings, J., A., 2005. Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3583–3604.
Curcic, M., 2015. Explicit air-sea momentum exchange in coupled atmosphere-wave-ocean modeling of tropical cyclones. Ph.D. dissertation, University of Miami, 189 pp.
D’Asaro, E., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 1405–1418.
Davidson, N. E., and Coauthors, 2014. ACCESS-TC: Vortex Specification, 4DVAR Initialization, Verification, and Structure Diagnostics. Mon. Wea. Rev., 142, 1265–1289.
Donelan, M.A., M. Curcic, S.S. Chen, and A.K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23.
Dudhia, J., 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 49–50.
Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715–721.
Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.
Halliwell, G. R., Jr., L. K. Shay, S. D. Jacob, O. M. Smedstad, and E. W. Uhlhorn, 2008: Improving ocean model initialization for coupled tropical cyclone forecast models using GODAE nowcasts. Mon. Wea. Rev., 136, 2576–2591.
Hamill, T. M. and Snyder, C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev., 128, 2905-2919.
——, J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011a. Global Ensemble Predictions of 2009’s Tropical Cyclones Initialized with an Ensemble Kalman Filter. Mon. Wea. Rev., 139, 668–688.
——, ——, D. T. Kleist, M. Fiorino, and S. G. Benjamin, 2011b. Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Wea. Rev., 139, 3243–3247.
Hendricks, and Coauthors, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction Systemfor Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650–663.
Hill, C., C. DeLuca, V. Balaji, M. Suarez, and A. da Silva, 2004: Architecture of the earth system modeling framework. Comput. Sci. Eng., 6, 18–28.
Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213–229.
Hong, S-Y., J. Dudhia, and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hormann, V., L. R. Centurioni, L. Rainville, C. M. Lee, and L. J. Braasch, 2014: Response of upper ocean currents to Typhoon Fanapi. Geophys. Res. Lett., 41, 3995–4003
Huang, C.-Y., I.-H. Wu, and L. Feng, 2016: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. J. Geophys. Res. Atmos., 121, 12,647–12,676.
Hunt, H. R., Kostelich, E. J. and Szunyogh, I. 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D. 230, 112–126.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. Wea. Forecasting, 30, 793–808.
Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 4188–4207.
Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014. An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252–270.
Judt, F., S. S. Chen, and J. Berner, 2016a: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles, Quart. J. Roy. Meteor. Soc., 142, 43-57. doi:10.1002/qj.2626.
Judt, F., and S. S. Chen, 2016b: Predictability and Dynamics of Tropical Cyclone Rapid Intensification Deduced from High-Resolution Stochastic Ensembles, Mon. Wea. Rev., 144, 4395–4420. doi: 10.1175/MWR-D-15-0413.1.
Kain, J., 2004: The Kain–Fritsch convective parameterization, An update. J. Appl. Meteor., 43, 170–181.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.
Kawabata, T., M. Kunii, K. Bessho, T. Nakazawa, N. Kohno, Y. Honda, K. Sawada, 2012: Reanalysis and Reforecast of Typhoon Vera (1959) Using a Mesoscale Four-Dimensional Variational Assimilation System. J. Meteor. Soc. Japan, 90, 467-491.
Kieu, C. and Z. Moon, 2016: Hurricane Intensity Predictability. Bull. Amer. Meteor. Soc., 97, 1847-1857.
Kleist, D. T., 2011. Assimilation of tropical cyclone advisory minimum sea level pressure in the NCEP Global Data Assimilation System. Wea. Forecasting, 26, 1085–1091.
Kunii, M. and T. Miyoshi, 2012: Including Uncertainties of Sea Surface Temperature in an Ensemble Kalman Filter: A Case Study of Typhoon Sinlaku (2008). Wea. Forecasting, 27, 1586–1597, https://doi.org/10.1175/WAF-D-11-00136.1
Kunii, M., 2015. Assimilation of tropical cyclone track and wind radius data with an ensemble Kalman filter. Wea. Forecasting, 30, 1050–1063.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993. An Initialization Scheme of Hurricane Models by Vortex Specification. Mon. Wea. Rev., 121, 2030–2045.
——, ——, R. E. Tuleya, and R. J. Ross, 1995. Improvements in the GFDL Hurricane Prediction System. Mon. Wea. Rev., 123, 2791–2801.
——, R. E. Tuleya, and M. A. Bender, 1998. The GFDL Hurricane Prediction System and Its Performance in the 1995 Hurricane Season. Mon. Wea. Rev., 126, 1306–1322.
Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 65–78.
Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.
Le Dimet, F.-X. and Talagrand, O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A. 38, 97-110.
Lea, D., I. Mirouze, M. J. Martin, R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere–land–ocean–sea ice model. Mon. Wea. Rev., 143, 4678–4694.
Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere-wave-ocean models and observations, J. Atmos. Sci., 69, 3576-3594.
Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere-ocean model, Mon. Wea. Rev., 142, 1927-1944.
Leslie, L. M., and G. J. Holland, 1995. On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101–110.
Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10,019–10,026.
Lin, K. J., S. C., Yang, and S. S. Chen, 2018: Reducing TC position uncertainty in an ensemble data assimilation and prediction system: A case study of typhoon Fanapi (2010). Wea. Forecasting, 33, 561–582.
Lin, I. I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649.
——, C.-C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 3288–3306.
——, I. F. Pun, and C. C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 3744–3757.
Liou, C.-S., and K. D. Sashegyi, 2011. On the initialization of tropical cyclones with a three-dimensional variational analysis. Nat. Hazards, 63, 1375–1391.
Liou, Y.-C., Wang, T.-C. C., and Huang, P.-Y., 2016: The inland eyewall reintensification of Typhoon Fanapi (2010) documented from an observational perspective using multiple-Doppler radar and surface measurements. Mon. Wea. Rev, 144, 241–261.
Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017. GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223–239.
Ma, Z., J. Fei, L. Liu, X. Huang, and X. Cheng, 2013: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air–sea interaction conditions. Mon. Wea. Rev., 141, 1285–1303.
Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801.
Miyamoto,Y., and T. Takemi, 2013:Atransition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112–129, doi:10.1175/JAS-D-11-0285.1.
Mrvaljevic, R. K., and Coauthors, 2013. Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., 40, 316–321.
Navarro, E. L., and G. J. Hakim, 2014. Storm-Centered Ensemble Data Assimilation for Tropical Cyclones. Mon. Wea. Rev., 142, 2309–2320.
Nehrkorn, T., B. K. Woods, R. N. Hoffman, and T. Aulign, 2015: Correcting for position errors in variational data assimilation. Mon. Wea. Rev., 143, 1368–1381.
Nguyen, H., and Y.-L. Chen, 2011. High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463–1491.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.
Poterjoy, J., and F. Zhang, 2011. Dynamics and Structure of Forecast Error Covariance in the Core of a Developing Hurricane. J. Atmos. Sci., 68, 1586–1606.
——, ——, and T. Weng, 2014. The effects of sampling errors on the EnKF assimilation of inner-core hurricane observations. Mon. Wea. Rev., 142, 1609–1630.
——, ——, 2014. Inter-comparison and coupling of ensemble and variational data assimilation approaches for the analysis and forecasting of Hurricane Karl (2010). Mon. Wea. Rev., 142, 3347-3364.
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.
Pu, Z.-X., and S. A. Braun, 2001. Evaluation of Bogus Vortex Techniques Using Four-Dimensional Variational Data Assimilation. Mon. Wea. Rev., 129, 2023–2039.
Pun, I., I. Lin, C. Lien, and C. Wu, 2018: Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Mon. Wea. Rev., 146, 661–677.
Rappaport, E. N., and Coauthors, 2009. Advances and Challenges at the National Hurricane Center. Wea. Forecasting, 24, 395–419.
Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44–70.
Sasaki, Y. 1958. An objective analysis based on the variational method. J. Meteorol. Soc. Jpn. 36, 77-88.
Shay, L. K., 2010: Air-sea interactions in tropical cyclones. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific Publishing, 93–132.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M. and co-authors, 2008: A description of the advanced research WRF Version 3, NCAR technical note, NCAR/TN- 475 + STR. 125 pp.
Sluka, T., S. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752–759.
Sraj, I., M. Iskandarani, A. Srinivasan, W.C. Thacker, J. Winokur, A. Alexanderian, C. Lee, S.S. Chen, and O.M. Knio, 2013: Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi. Mon. Wea. Rev., 141, 2347–2367.
Tao, W.-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Peters-Lidard, and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 1–16
Tenerelli, J.E., and S. S. Chen, 2001: High-resolution simulations of Hurricane Floyd using MM5 with vortex-following mesh refinement, AMS 18th Conference on Weather Analysis and Forecasting and the 14th Conference on Numerical Weather Prediction, 18, J52-J54.
Torn, R. D., G. J. Hakim, and C. Snyder, 2006. Boundary conditions for limited-area Ensemble Kalman Filters. Mon. Wea. Rev., 134, 2490–2502.
——, and G. J. Hakim, 2009. Ensemble Data Assimilation Applied to RAINEX Observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 2817–2829.
Tallapragada, V., and Coauthors, 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 scientific documentation. NCAR Development Testbed Center Rep., 105 pp.
Ueno, M., 1989. Operational bogussing and numerical prediction of typhoon in JMA. JMA/NDP Tech. Rep. 28, 48 pp.
Wang, Y. and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes - a review. Meteorology and Atmospheric Physics, 87 (4), 257–278.
Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118, 3292–3308.
Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software design description for the HYbrid Coordinate Ocean Model (HYCOM), version 2.2. Tech. Rep. NRL/MR/7320—09-9166, NRL, Stennis Space Center, MS, 157 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a494779.pdf.
Webb, E. K., 1970: Profile relationships: The log-linear range and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67–90.
Weng, Y., and F. Zhang, 2012. Assimilating Airborne Doppler Radar Observations with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization and Prediction: Katrina (2005). Mon. Wea. Rev., 140, 841–859.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.
Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787–790.
——, C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578.
——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of Tropical Cyclone Track and Structure Based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806–3822.
——, W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153–167.
Wu, T.-C., H. Liu, S. J. Majumdar, C. S. Velden, and J. L. Anderson, 2014. Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 142, 49–71.
Yang, M.-J., Y.-C. Wu, and Y.-C. Liou, 2018: The study of inland eyewall reconstruction of Typhoon Fanapi (2010) using numerical experiments and vorticity budget analyses. J. Geophys. Res. Atmos., 123, 9604–9623.
Yang, S.-C., K.-J. Lin, T. Miyoshi, and E. Kalnay, 2013. Improving the spin-up of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus, 65A, 20804.
——, S.-H. Chen, S.-Y. Chen, C.-Y. Huang and C.-S. Chen, 2014: Evaluating the impact of the COSMIC-RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.
Yano, J. and K. Emanuel, 1991: An Improved Model of the Equatorial Troposphere and Its Coupling with the Stratosphere. J. Atmos. Sci., 48, 377–389, https://doi.org/10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2
Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.
Zhang, F., Y. Weng, J. a. Sippel, Z. Meng, and C. H. Bishop, 2009. Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 137, 2105–2125.
——, ——, J. F. Gamache, and F. D. Marks, 2011. Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.
Zou, X., and Q. Xiao, 2000. Studies on the Initialization and Simulation of a Mature Hurricane Using a Variational Bogus Data Assimilation Scheme. J. Atmos. Sci., 57, 836–860.
指導教授 楊舒芝(Shu-Chih Yang) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明