參考文獻 |
Part I:
[1]Zahiri, B.; Sow, P. K.; Kung, C. H.; Mérida, W. Active Control over the Wettability from Superhydrophobic to Superhydrophilic by Electrocheically Altering the Oxidation State in a Low Voltage Range. Adv. Mater. Interfaces 2017, 4, 1700121.
[2]Yang, J.; Zhang, Z.; Men, X.; Xu, X.; Zhou X. Counterion Exchange to Achieve Reversibly Switchable Hydrophobicity and Oleophobicity on Fabrics. Langmuir 2011, 27, 7357-7360.
[3]Cheng, Z.; Wang, J.; Lai, H.; Du, Y.; Hou, R.; Li, C.; Zhang, N.; Sun, K. pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir 2015, 31, 1393-1399.
[4]Lei, Z.; Zhang, G.; Deng, Y.; Wang, C. Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/ Water Separation. ACS Appl. Mater. Inter. 2017, 9, 8967-8974.
[5]Zhua, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review. Lap Chip 2017, 17, 34-75.
[6]Teh, S.-Y.; Lin R.; Hung, L.-H.; Lee, A. P. Droplet Microfluidics. Lap Chip 2008, 8, 98-220.
[7]Ueda, E.; Levkin, P. A. Emerging Applications of Superhydrophilic-Superhydrophobic Micropatterns. Adv. Mater. 2013, 25, 1368-1381.
[8]Li, Y.-F.; Wu, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Facile Manipulation of Receding Contact Angles of a Substrate by Roughening and Fluorination. Appl. Surf. Sci. 2015, 355, 127-132.
[9]Chang, C.-C.; Sheng, Y.-J.; Tsao, H.-K. Wetting Hysteresis of Nanodrops on Nanorough Surfaces. Phy. Rev. E 2016, 94, 042807.
[10]Cui, H.; Yang, G. Z.; Sun, Y.; Wang, C. X. Reversible Ultraviolet Light-Manipulated Superhydrophobic-to-Superhydrophilic Transition on a Tubular SiC Nanostructure Film. Appl. Phys. Lett. 2010, 97, 183112.
[11]Singh, V.; Huang, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Smart Zwitterionic Sulfobetaine Silane Surfaces with Switchable Wettability for Aqueous/Nonaqueous Drops. J. Mater. Chem. A 2018, 6, 2279-2288.
[12]Li, C.; Guo, R.; Jiang, X.; Hu, S.; Li, L.; Cao, X.; Yang, H.; Song, Y.; Ma, Y.; Jiang, L. Reversible Switching of Water-Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side-Chain Liquid-Crystal Polymer. Adv. Mater. 2009, 21, 4254-4258.
[13]Shan, C.; Yong, J.; Yang, Q.; Chen, F.; Huo, J.; Zhuang, J.; Jiang, Z.; Hou, X. Reversible Switch between Underwater Superaerophilicity and Superaerophobicity on the Superhydrophobic Nanowire-Haired Mesh for Controlling Underwater Bubble Wettability. AIP Adv. 2018, 8, 045001.
[14]Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang L.; Zhu, D. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc. 2004, 126, 62-63.
[15]Papadopoulou, E. L.; Barberoglou, M.; Zorba, V.; Manousaki, A.; Pagkozidis, A.; Stratakis, E.; Fotakis, C. Reversible Photoinduced Wettability Transition of Hierarchical ZnO Structures. J. Phys. Chem. C 2009, 113, 2891-2895.
[16]Cheng, Z.; Lai, H.; Du, Y.; Fu, K.; Hou, R.; Li, C.; Zhang N.; Sun, K. pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity. ACS Appl. Mater. Inter. 2014, 6, 636-641.
[17]Hong, X.; Gao, X.; Jiang, L. Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet. J. Am. Chem. Soc. 2007, 129, 1478-1479.
[18]Guselnikova, O.; Svanda, J.; Postnikov, P.; Kalachyova, Y.; Svorcik V.; Lyutakov, O. Fast and Reproducible Wettability Switching on Functionalized PVDF/PMMA Surface Controlled by External Electric Field. Adv. Mater. Inter. 2017, 4, 1600886.
[19]Caputo, G.; Cingolani, R.; Cozzoli, P. D.; Athanassiou, A. Wettability Conversion of Colloidal TiO2 Nanocrystal Thin Films with UV-Switchable Hydrophilicity. Phys. Chem. Chem. Phys. 2009, 11, 3692-3700.
[20]Zhou, H.; Wang, H.; Niu H.; Lin, T. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids. Sci. Rep. 2013, 3, 2964.
[21]Wu, C.-J.; Huang, C.-J.; Jiang, S.; Sheng, Y.-J.; Tsao, H.-K. Superhydrophilicity and Spontaneous Spreading on Zwitterionic Surfaces: Carboxybetaine and Sulfobetaine. RSC Adv. 2016, 6, 24827-24834.
[22]Chang, F.-M.; Cheng, S.-L.; Hong, S.-J.; Sheng, Y.-J.; Tsao, H.-K. Superhydrophilicity to Superhydrophobicity Transition of CuO Nanowire Films. Appl. Phys. Lett. 2010, 96, 114101.
[23]DeRose, J. A.; Hoque, E.; Bhushan, B.; Mathieu, H. J. Characterization of Perfluorodecanoate Self-Assembled Monolayers on Aluminum and Comparison of Stability with Phosphonate and Siloxy Self-Assembled Monolayers. Surf. Sci. 2008, 602, 1360-1367.
[24]Hoque, E.; DeRose, J. A.; Hoffmann, P.; Mathieu, H. J. Robust Perfluorosilanized Copper Surfaces. Surf. Interf. Anal. 2006, 38, 62-68.
[25]Russell, T. P. Surface-Responsive Materials. Science 2002, 297, 964-967.
[26]R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[27]A. Cassie, S. Baxter, “Wettability of porous surfaces.”, Trans. Faraday Soc. 40, 546-551 (1944).
Part II:
[1]Drelich, Jaroslaw; Chibowski Emil. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.Langmuir, 2010, 26.24: 18621-18623.
[2]Howarter, J. A., & Youngblood, J. P. Self‐Cleaning and Next Generation Anti‐Fog Surfaces and Coatings.Macromolecular Rapid Communications, 2008, 29.6: 455-466.
[3]TROGOLO, Jeffrey A.; BARRY, John E.Antibiotic hydrophilic polymer coating. U.S. Patent No 6,436,422, 2002
[4]Park, K. D., Kim, Y. S., Han, D. K., Kim, Y. H., Lee, E. H. B., Suh, H., & Choi, K. SBacterial adhesion on PEG modified polyurethane surfaces. Biomaterials, 1998, 19.7-9: 851-859.
[5]QU, Jian; WU, Huiying; CHENG, Ping. Effects of functional surface on performance of a micro heat pipe.International Communications in Heat and Mass Transfer, 2008, 35.5: 523-528.
[6]Wang, C. C., Lee, W. S., Sheu, W. J., & Chang, Y. J. A comparison of the airside performance of the fin-and-tube heat exchangers in wet conditions; with and without hydrophilic coating.Applied Thermal Engineering, 2002, 22.3: 267-278.
[7]LI, Haiyan, et al. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis.Bioresource technology, 2008, 99.8: 3301-3305.
[8]Galatas, F., & Hispanagar, S. A. Agar-gulaman-kanten: the king of dietary fibers. In: 6. Asia-Pacific Conference on Algal Biotechnology,, Makati City (Philippines), 12-15 Oct 2006. APCAB, 2006.
[9]Medin, Anders S. Studies of structure and properties of agarose. 1996.
[10]Lahaye, M., & Rochas, C. Chemical structure and physico-chemical properties of agar. In:International workshop on gelidium. Springer, Dordrecht, 1991. p. 137-148
[11]Armisén, R. Agar and agarose biotechnological applications. In:International Workshop on Gelidium. Springer, Dordrecht, 1991. p. 157-166.
[12]Saha, D., & Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: a critical review.Journal of food science and technology, 2010, 47.6: 587-59
[13]Armisen, R. Applications of agar-agar and agaroses in microbiology, electrophoresis and chromatography. In:Proceedings of Workshop COST. 1997. p. 3-16.
[14]FOORD, S. A.; ATKINS, E. D. Y. New x‐ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism.Biopolymers: Original Research on Biomolecules, 1989, 28.8: 1345-1365.
[15]Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H., & Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. TRENDS in Biotechnology, 2003, 21.10: 445-451.
[16]Johansson,B. G. Agarose gel electrophoresis.Scandinavian Journal of Clinical and Laboratory Investigation, 1972, 29.sup124: 7-19.
[17]Porath, J., Janson, J. C., & Torgny, L.. Agar derivatives for chromatography, electrophoresis and gel-bound enzymes: I. Desulphated and reduced cross-linked agar and agarose in spherical bead form.Journal of Chromatography A, 1971,60, 167-177.
[18]Nonomura, Yoshimune, et al. Spreading behavior of water droplets on fractal agar gel surfaces.Langmuir, 2010, 26.20: 16150-16154.
[19]Gong, J. P., Kagata, G., & Osada, Y. Friction of gels. 4. Friction on charged gels.The Journal of Physical Chemistry B, 1999, 103.29: 6007-6014.
[20]Banaha, M., Daerr, A., & Limat, L. Spreading of liquid drops on agar gels.The European Physical Journal Special Topics, 2009, 166.1: 185-188.
[21]Szabo, D., Akiyoshi, S., Matsunaga, T., Gong, J. P., Osada, Y., & Zrinyi, M.Spreading of liquids on gel surfaces.The Journal of Chemical Physics, 113(18), 8253-8259.
[22]Kaneko, Daisaku, et al. Flower Petal-like Pattern on Soft Hydrogels during Vodka Spreading. In:Colloids for Nano-and Biotechnology. Springer, Berlin, Heidelberg, 2008. p. 225-230.
[23]Nonomura, Y., Chida, S., Seino, E., & Mayama, H. Anomalous spreading with Marangoni flow on agar gel surfaces.Langmuir,2012,28,8:3799-3806.
[24]Ranc, H., Elkhyat, A., Servais, C., Mac-Mary, S., Launay, B., & Humbert, P. Friction coefficient and wettability of oral mucosal tissue: changes induced by a salivary layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276.1-3: 155-161
[25]Shanker, Ravi M., et al. An in vitro technique for measuring contact angles on the corneal surface and its application to evaluate corneal wetting properties of water soluble polymers. International journal of pharmaceutics, 1995, 119.2: 149-163.
[26]Daniels, K. E., Mukhopadhyay, S., & Behringer, R. P. (2005). Starbursts and wispy drops: Surfactants spreading on gels.Chaos: An Interdisciplinary Journal of Nonlinear Science,2005,15.4:041107.
[27]Prasad, Kamalesh, et al. On the properties of agar gel containing ionic and non-ionic surfactants. International journal of biological macromolecules, 2005, 35.3-4: 135-144.
[28]Bharmoria, Pankaj; KUMAR, Arvind. Interactional behaviour of surface active ionic liquids with gelling biopolymer agarose in aqueous medium. RSC Advances, 2013, 3.42: 19600-19608.
[29]Svensson, E., Gudmundsson, M., & Eliasson, A. C. Binding of sodium dodecylsulphate to starch polysaccharides quantified by surface tension measurements. Colloids and surfaces B: Biointerfaces, 1996, 6.4-5: 227-233
[30]Gong, Jian Ping. Friction and lubrication of hydrogels—its richness and complexity.Soft matter, 2006, 2.7: 544-552. |