博碩士論文 106324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.119.122.106
姓名 黃璽軒(Xi-Xuan Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 表面潤濕性質的切換與水凝膠表面的完全潤濕行為
(Smart Surface with Switchable Wettability and Total Wetting Behavior on Hydrogel Surface)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第一部份-表面潤濕性質的切換
智能潤濕性表面(smart surface),又稱作為潤濕性可切換表面(Switchable surface)近年來吸引了許多的關注,透過調控外在環境刺激能控制表面對於水性及非水性液滴潤濕性質的轉換能力,讓其在多種領域的應用上具備很大的潛力。在本研究中我們藉由一種簡單快速且有效的方式於含有氫氧基團的基材上製備可置換性表面,透過含氟界面活性劑溶液潤洗材料表面,使表面化學組成改變趨向疏水和疏油的潤濕性質,然而其潤濕性質能透過CTAB水溶液的潤洗輕易的達到可逆行為,這種快速且簡易轉換潤濕性質的方法主要是經由轉酯反應(esterification)改質材料表面組成影響其潤濕性質。因為考慮到表面的形態和表面氫氧基團數量為進行轉酯反應和表面潤濕性質的主要因素,我們也嘗試以增加表面粗糙度以及氧化的方式,促使潤濕性可切換表面轉換的能力上升,將提升可轉換性表面的潤濕性質於超親水性/超親油性(CA~0°)和超疏水性(CA~156°)/接近超疏油性(CA~132°)之間來回轉換至少20次,並且對於水性和非水性液滴都具備一樣的效果。且此方法幾乎適用於所有類型的材料,例如金屬、陶瓷和高分子。
第二部份-水凝膠表面的完全潤濕行為
超親水材料應用在近幾十年來一直是業界所著重的領域,可以用於抗霧、抗反射、防生物沾黏以及用於作為輸送管線內壁材料,可降低流體摩擦減少能量之損耗,因此這種極端潤濕特性表面的研究近年來得到了廣泛的關注,成為材料科學領域的一個熱點。然而大多數超親水材料價格不斐且製備過程較為繁複,所以較超疏水表面來說,超親水表面的研究相對稀少。
於本研究中,我們以瓊脂凝膠(agar gel)的潤濕性質作為我們的研究目標,
瓊脂凝膠大部份為水組成,因此我們認為其作為物質表面材料能提升潤濕性質表現,但由於水凝膠不比一般固體材料擁有較強的機械性質,於實際應用端存在許多的限制,當我們增加瓊脂含量以提升瓊脂凝膠本身機械性質,卻發現瓊脂凝膠表面因瓊脂分子的取向力(orientation)而趨於疏水。而後我們嘗試在瓊脂凝膠添加界面活性劑以改善其表面潤濕性質,發現陰離子型界面活性劑能與凝膠中瓊脂分子產生作用,使得瓊脂凝膠表面呈完全潤濕性質(total wetting),此外因為只添加些許的界面活性劑,所以不影響瓊脂凝膠本身的機械性質。此將界面活性劑摻入瓊脂凝膠中,所製得之超親水材料具有良好潤濕性質及機械強度,希望將來能應用於各領域之中增加效益。
摘要(英) Part I – Smart surface with switchable wettability
Nowadays, switchable surface has drawn increasing of attentions for its myriad applications. Which wettability for both aqueous and non-aqueous drops can response to environmental stimuli. Reversible control of the surface properties has been achieved by various methods. In our case, we develop a facile and effective method to achieve the wettability transition on hydroxyl surface at ambient temperature. A fluoro-surfactant solution rinse acts as a stimulus to obtain a hydrophobic and oleophobic surface. Then, CTAB solution rinse can simply lead to the reversal of the surface wettability. The reversible behavior of switchable surface is ascribed to the esterification between the fluoro-surfactant and the hydroxyl surface of materials, such as metal, ceramics, and polymer. In order to enhance the ability of wettability switching, we conduct a series of experiment for surface modification, including roughening and oxidation for improving the esterification. As a result, it shows tremendous wettability changed from superhydrophilicity to superhydrophobicity.
Thus, this switchable surface can be employed to fabricate intelligent devices for controlling mobility and sensing.
Part II – Total wetting behavior on hydrogel surfaces
Extreme wetting behavior have been investigated in a variety of studies in recent decade. Superhydrophilic surface with low water contact angle on it, when a water droplet hen a water droplet contacts the superhydrophilic surfaces, water can spread over them completely. This type of surface is potentially applied to industrial application, such as antifogging、antifouling and droplet transportation. However, the fabrication of superhydrophilic surfaces is complicated and high cost. In this work, we manufacture a superhydrophilic surface with agar gel, which is consist mainly of water. Furthermore, we introduce the anionic surfactant in agar gel, and the wettability on the agar gel surface will be modified effectively, it can improve the wetting behavior on agar gel by the hydrophobic interaction between surfactants and agar molecules. Nevertheless, the mechanical properties of agar gel will not be degraded. This approach provides us an effective method to improve the wetting properties on high agar content agar gel surface. Therefore we can fabricate a superhydrophilic surface with outstanding mechanical and wetting properties by a simple method.
關鍵字(中) ★ 潤濕行為
★ 水凝膠
★ 潤濕性可切換表面
關鍵字(英) ★ Wetting behavior
★ Hydrogel
★ Switchable surface
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一部分-表面潤濕性質的切換 1
第一章 緒論 2
1-1前言 2
1-2相關文獻回顧 3
1-3動機與目的 7
第二章 基本原理 9
2-1潤濕性質 9
2-1-1表面張力與接觸角定義-楊氏方程式(Young’s equation) 10
2-1-2溫佐方程式(wenzel’s equation) 12
2-1-3卡西方程式(cassie’s equation) 13
2-2接觸角遲滯理論 14
2-2-1接觸角遲滯量測方法 17
2-3轉酯反應 19
第三章 實驗方法介紹 21
3-1實驗藥品與材料 21
3-2實驗儀器及原理介紹 22
3-2-1影像式接觸角量測儀(Drop Shape Analyzer) 22
3-2-2X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 24
3-3實驗方法 25
3-3-1製備潤濕性可切換表面(switchable surface) 25
3-3-2潤濕性可切換表面之前處理 26
3-3-3轉酯反應機制驗證 27
第四章 結果與討論 28
4-1潤濕性可切換表面基材之潤濕行為 28
4-2前處理對潤濕性可切換表面潤濕行為之影響 32
4-3合成潤濕性可切換表面機制驗證 35
第五章 結論 38
第六章 參考文獻 39
第二部份-水凝膠表面的完全潤濕行為 43
第七章 緒論 44
7-1前言 44
7-2文獻回顧 45
7-3動機與目的 48
第八章 基本原理 50
8-1流變學 50
第九章 實驗方法介紹 54
9-1實驗藥品與材料 54
9-2實驗儀器和原理介紹 55
9-2-1流變儀(Rheometer) 55
9-2-2巨觀放大顯微測量系統 59
9-2-3高速取像光學介面與流變性質量測模組 59
9-3實驗方法 60
9-3-1瓊脂凝膠和含界面活性劑瓊脂凝膠制備 60
9-3-2(含界面活性劑)瓊脂凝膠機械性質量測 62
9-3-2(含界面活性劑)瓊脂凝膠潤濕性質量測 63
第十章 水凝膠之機械性質與潤濕行為 65
10-1水凝膠之整體性質 65
10-2水凝膠表面的潤濕行為 68
10-2-1純液滴於水凝膠表面之潤濕行為 69
10-2-2水凝膠表面能測定 74
10-2-3含界面活性劑液滴於水凝膠表面之潤濕行為 75
第十一章 含界面活性劑水凝膠的機械性質與潤濕行為 79
11-1含界面活性劑水凝膠之整體性質 79
11-2含界面活性劑水凝膠表面之潤濕行為 81
11-3界面活性劑與瓊脂分子作用機制 84
第十二章 結論 88
第十三章 參考文獻 90
參考文獻 Part I:
[1]Zahiri, B.; Sow, P. K.; Kung, C. H.; Mérida, W. Active Control over the Wettability from Superhydrophobic to Superhydrophilic by Electrocheically Altering the Oxidation State in a Low Voltage Range. Adv. Mater. Interfaces 2017, 4, 1700121.
[2]Yang, J.; Zhang, Z.; Men, X.; Xu, X.; Zhou X. Counterion Exchange to Achieve Reversibly Switchable Hydrophobicity and Oleophobicity on Fabrics. Langmuir 2011, 27, 7357-7360.
[3]Cheng, Z.; Wang, J.; Lai, H.; Du, Y.; Hou, R.; Li, C.; Zhang, N.; Sun, K. pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir 2015, 31, 1393-1399.
[4]Lei, Z.; Zhang, G.; Deng, Y.; Wang, C. Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/ Water Separation. ACS Appl. Mater. Inter. 2017, 9, 8967-8974.
[5]Zhua, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review. Lap Chip 2017, 17, 34-75.
[6]Teh, S.-Y.; Lin R.; Hung, L.-H.; Lee, A. P. Droplet Microfluidics. Lap Chip 2008, 8, 98-220.
[7]Ueda, E.; Levkin, P. A. Emerging Applications of Superhydrophilic-Superhydrophobic Micropatterns. Adv. Mater. 2013, 25, 1368-1381.
[8]Li, Y.-F.; Wu, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Facile Manipulation of Receding Contact Angles of a Substrate by Roughening and Fluorination. Appl. Surf. Sci. 2015, 355, 127-132.
[9]Chang, C.-C.; Sheng, Y.-J.; Tsao, H.-K. Wetting Hysteresis of Nanodrops on Nanorough Surfaces. Phy. Rev. E 2016, 94, 042807.
[10]Cui, H.; Yang, G. Z.; Sun, Y.; Wang, C. X. Reversible Ultraviolet Light-Manipulated Superhydrophobic-to-Superhydrophilic Transition on a Tubular SiC Nanostructure Film. Appl. Phys. Lett. 2010, 97, 183112.
[11]Singh, V.; Huang, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Smart Zwitterionic Sulfobetaine Silane Surfaces with Switchable Wettability for Aqueous/Nonaqueous Drops. J. Mater. Chem. A 2018, 6, 2279-2288.
[12]Li, C.; Guo, R.; Jiang, X.; Hu, S.; Li, L.; Cao, X.; Yang, H.; Song, Y.; Ma, Y.; Jiang, L. Reversible Switching of Water-Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side-Chain Liquid-Crystal Polymer. Adv. Mater. 2009, 21, 4254-4258.
[13]Shan, C.; Yong, J.; Yang, Q.; Chen, F.; Huo, J.; Zhuang, J.; Jiang, Z.; Hou, X. Reversible Switch between Underwater Superaerophilicity and Superaerophobicity on the Superhydrophobic Nanowire-Haired Mesh for Controlling Underwater Bubble Wettability. AIP Adv. 2018, 8, 045001.
[14]Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang L.; Zhu, D. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc. 2004, 126, 62-63.
[15]Papadopoulou, E. L.; Barberoglou, M.; Zorba, V.; Manousaki, A.; Pagkozidis, A.; Stratakis, E.; Fotakis, C. Reversible Photoinduced Wettability Transition of Hierarchical ZnO Structures. J. Phys. Chem. C 2009, 113, 2891-2895.
[16]Cheng, Z.; Lai, H.; Du, Y.; Fu, K.; Hou, R.; Li, C.; Zhang N.; Sun, K. pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity. ACS Appl. Mater. Inter. 2014, 6, 636-641.
[17]Hong, X.; Gao, X.; Jiang, L. Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet. J. Am. Chem. Soc. 2007, 129, 1478-1479.
[18]Guselnikova, O.; Svanda, J.; Postnikov, P.; Kalachyova, Y.; Svorcik V.; Lyutakov, O. Fast and Reproducible Wettability Switching on Functionalized PVDF/PMMA Surface Controlled by External Electric Field. Adv. Mater. Inter. 2017, 4, 1600886.
[19]Caputo, G.; Cingolani, R.; Cozzoli, P. D.; Athanassiou, A. Wettability Conversion of Colloidal TiO2 Nanocrystal Thin Films with UV-Switchable Hydrophilicity. Phys. Chem. Chem. Phys. 2009, 11, 3692-3700.
[20]Zhou, H.; Wang, H.; Niu H.; Lin, T. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids. Sci. Rep. 2013, 3, 2964.
[21]Wu, C.-J.; Huang, C.-J.; Jiang, S.; Sheng, Y.-J.; Tsao, H.-K. Superhydrophilicity and Spontaneous Spreading on Zwitterionic Surfaces: Carboxybetaine and Sulfobetaine. RSC Adv. 2016, 6, 24827-24834.
[22]Chang, F.-M.; Cheng, S.-L.; Hong, S.-J.; Sheng, Y.-J.; Tsao, H.-K. Superhydrophilicity to Superhydrophobicity Transition of CuO Nanowire Films. Appl. Phys. Lett. 2010, 96, 114101.
[23]DeRose, J. A.; Hoque, E.; Bhushan, B.; Mathieu, H. J. Characterization of Perfluorodecanoate Self-Assembled Monolayers on Aluminum and Comparison of Stability with Phosphonate and Siloxy Self-Assembled Monolayers. Surf. Sci. 2008, 602, 1360-1367.
[24]Hoque, E.; DeRose, J. A.; Hoffmann, P.; Mathieu, H. J. Robust Perfluorosilanized Copper Surfaces. Surf. Interf. Anal. 2006, 38, 62-68.
[25]Russell, T. P. Surface-Responsive Materials. Science 2002, 297, 964-967.
[26]R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[27]A. Cassie, S. Baxter, “Wettability of porous surfaces.”, Trans. Faraday Soc. 40, 546-551 (1944).
Part II:
[1]Drelich, Jaroslaw; Chibowski Emil. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.Langmuir, 2010, 26.24: 18621-18623.
[2]Howarter, J. A., & Youngblood, J. P. Self‐Cleaning and Next Generation Anti‐Fog Surfaces and Coatings.Macromolecular Rapid Communications, 2008, 29.6: 455-466.
[3]TROGOLO, Jeffrey A.; BARRY, John E.Antibiotic hydrophilic polymer coating. U.S. Patent No 6,436,422, 2002
[4]Park, K. D., Kim, Y. S., Han, D. K., Kim, Y. H., Lee, E. H. B., Suh, H., & Choi, K. SBacterial adhesion on PEG modified polyurethane surfaces. Biomaterials, 1998, 19.7-9: 851-859.
[5]QU, Jian; WU, Huiying; CHENG, Ping. Effects of functional surface on performance of a micro heat pipe.International Communications in Heat and Mass Transfer, 2008, 35.5: 523-528.
[6]Wang, C. C., Lee, W. S., Sheu, W. J., & Chang, Y. J. A comparison of the airside performance of the fin-and-tube heat exchangers in wet conditions; with and without hydrophilic coating.Applied Thermal Engineering, 2002, 22.3: 267-278.
[7]LI, Haiyan, et al. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis.Bioresource technology, 2008, 99.8: 3301-3305.
[8]Galatas, F., & Hispanagar, S. A. Agar-gulaman-kanten: the king of dietary fibers. In: 6. Asia-Pacific Conference on Algal Biotechnology,, Makati City (Philippines), 12-15 Oct 2006. APCAB, 2006.
[9]Medin, Anders S. Studies of structure and properties of agarose. 1996.
[10]Lahaye, M., & Rochas, C. Chemical structure and physico-chemical properties of agar. In:International workshop on gelidium. Springer, Dordrecht, 1991. p. 137-148
[11]Armisén, R. Agar and agarose biotechnological applications. In:International Workshop on Gelidium. Springer, Dordrecht, 1991. p. 157-166.
[12]Saha, D., & Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: a critical review.Journal of food science and technology, 2010, 47.6: 587-59
[13]Armisen, R. Applications of agar-agar and agaroses in microbiology, electrophoresis and chromatography. In:Proceedings of Workshop COST. 1997. p. 3-16.
[14]FOORD, S. A.; ATKINS, E. D. Y. New x‐ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism.Biopolymers: Original Research on Biomolecules, 1989, 28.8: 1345-1365.
[15]Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H., & Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. TRENDS in Biotechnology, 2003, 21.10: 445-451.
[16]Johansson,B. G. Agarose gel electrophoresis.Scandinavian Journal of Clinical and Laboratory Investigation, 1972, 29.sup124: 7-19.
[17]Porath, J., Janson, J. C., & Torgny, L.. Agar derivatives for chromatography, electrophoresis and gel-bound enzymes: I. Desulphated and reduced cross-linked agar and agarose in spherical bead form.Journal of Chromatography A, 1971,60, 167-177.
[18]Nonomura, Yoshimune, et al. Spreading behavior of water droplets on fractal agar gel surfaces.Langmuir, 2010, 26.20: 16150-16154.
[19]Gong, J. P., Kagata, G., & Osada, Y. Friction of gels. 4. Friction on charged gels.The Journal of Physical Chemistry B, 1999, 103.29: 6007-6014.
[20]Banaha, M., Daerr, A., & Limat, L. Spreading of liquid drops on agar gels.The European Physical Journal Special Topics, 2009, 166.1: 185-188.
[21]Szabo, D., Akiyoshi, S., Matsunaga, T., Gong, J. P., Osada, Y., & Zrinyi, M.Spreading of liquids on gel surfaces.The Journal of Chemical Physics, 113(18), 8253-8259.
[22]Kaneko, Daisaku, et al. Flower Petal-like Pattern on Soft Hydrogels during Vodka Spreading. In:Colloids for Nano-and Biotechnology. Springer, Berlin, Heidelberg, 2008. p. 225-230.
[23]Nonomura, Y., Chida, S., Seino, E., & Mayama, H. Anomalous spreading with Marangoni flow on agar gel surfaces.Langmuir,2012,28,8:3799-3806.
[24]Ranc, H., Elkhyat, A., Servais, C., Mac-Mary, S., Launay, B., & Humbert, P. Friction coefficient and wettability of oral mucosal tissue: changes induced by a salivary layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276.1-3: 155-161
[25]Shanker, Ravi M., et al. An in vitro technique for measuring contact angles on the corneal surface and its application to evaluate corneal wetting properties of water soluble polymers. International journal of pharmaceutics, 1995, 119.2: 149-163.
[26]Daniels, K. E., Mukhopadhyay, S., & Behringer, R. P. (2005). Starbursts and wispy drops: Surfactants spreading on gels.Chaos: An Interdisciplinary Journal of Nonlinear Science,2005,15.4:041107.
[27]Prasad, Kamalesh, et al. On the properties of agar gel containing ionic and non-ionic surfactants. International journal of biological macromolecules, 2005, 35.3-4: 135-144.
[28]Bharmoria, Pankaj; KUMAR, Arvind. Interactional behaviour of surface active ionic liquids with gelling biopolymer agarose in aqueous medium. RSC Advances, 2013, 3.42: 19600-19608.
[29]Svensson, E., Gudmundsson, M., & Eliasson, A. C. Binding of sodium dodecylsulphate to starch polysaccharides quantified by surface tension measurements. Colloids and surfaces B: Biointerfaces, 1996, 6.4-5: 227-233
[30]Gong, Jian Ping. Friction and lubrication of hydrogels—its richness and complexity.Soft matter, 2006, 2.7: 544-552.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2019-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明