參考文獻 |
Burrows JF., Kelvin AA, McFarlane C, Burden RE, McGrattan MJ, De la Vega M, et al. 2009. USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J Biol Chem. 284:9587–95.
Borbely G., Haldosen LA, Dahlman-Wright K, Zhao C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. 2015. Oncotarget. 6:33623–35.
Bolli E., Movahedi K, Laoui D, Van Ginderachter JA. Novel insights in the regulation and function of macrophages in the tumor microenvironment. 2017. Curr Opin Oncol. 29:55–61.
Chen J., Chen ZJ. Regulation of NF-kappaB by ubiquitination. 2013. Curr Opin Immunol. 25:4–12.
Chen R., Zhang L, Zhong B, Tan B, Liu Y, Shu HB, et al. The ubiquitin-specific protease 17 is involved in virus-triggered type I IFN signaling. 2010. Cell Res. 20:802–11.
Conway EM, Pikor LA, Kung SH, Hamilton MJ, Lam S, Lam WL, et al. Macrophages, inflammation, and lung cancer. 2016. Am J Respir Crit Care Med. 193:116–30.
Doedens AL., Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. 2010. Cancer Res. 70:7465–75.
De la Vega M., Kelvin AA, Dunican DJ, McFarlane C, Burrows JF, Jaworski J, et al. The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. 2011. Nat Commun. 2:259.
Elinav E., Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. 2013. Nat Rev Cancer. 13:759–71.
Farshi P., Deshmukh RR, Nwankwo JO, Arkwright RT, Cvek B, Liu J, et al. Deubiquitinases (DUBs) and DUB inhibitors: a patent review. 2015. Expert Opin Ther Pat. 25:1191–208.
Guasparri I., Wu H, Cesarman E. The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. 2006. EMBO Rep. 7:114–9.
Győrffy B., Surowiak P, Budczies J, Lánczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. 2013. PLoS ONE. 8:e82241.
Goswami KK., Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R, et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. 2017. Cell Immunol. 316:1–10.
Herbst RS., Heymach JV, Lippman SM. Lung cancer. 2008. N Engl J Med. 359:1367–80.
Hanahan D., Weinberg RA. Hallmarks of cancer: the next generation. 2011. Cell. 144:646–74.
Houghton AM. Mechanistic links between COPD and lung cancer. 2013. Nat Rev Cancer. 13:233–45.
Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. 2013. Mol Cancer.12:86.
Jin J, Xiao Y, Hu H, Zou Q, Li Y, Gao Y, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. 2015. Nat Commun. 6:5930.
Korkaya H., Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. 2011. Clin Cancer Res. 17:6125–9.
Lim KH., Ramakrishna S, Baek KH. Molecular mechanisms and functions of cytokine-inducible deubiquitinating enzymes. 2013. Cytokine Growth Factor Rev. 24:427–31.
Lanczky A., Nagy A, Bottai G, Munkacsy G, Paladini L, Szabo A, et al. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2,178 breast cancer patients. 2016. Breast Cancer Res Treat. 160:439–46.
Liu T., Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6- dependent activation of DUB3 regulates cancer metastasis through SNAIL1. 2017. Nat Commun. 8:13923.
Torre LA., Siegel RL, Jemal A. Lung cancer statistics. 2016. Adv Exp Med Biol. 893:1–19.
Sica A., Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. 2008. Cancer Lett. 267:204–15.
Sainz B Jr., Carron E, Vallespinos M, Machado HL. Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. 2016. Mediat Inflamm. 2016:9012369.
Martinez FO., Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. 2006. J Immunol. 177:7303–11.
McFarlane C., Kelvin AA, de la Vega M, Govender U, Scott CJ, Burrows JF, et al. The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. 2006. Cancer Res. 70:3329–39.
Magee JA., Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. 2012. Cancer Cell. 21:283–96.
McFarlane C., McFarlane S, Paul I, Arthur K, Scheaff M, Kerr K, et al. The deubiquitinating enzyme USP17 is associated with nonsmall cell lung cancer (NSCLC) recurrence and metastasis. 2013. Oncotarget. 4:1836–43.
MacDonagh L., Gray SG, Breen E, Cuffe S, Finn SP, O’Byrne KJ, et al. Lung cancer stem cells: The root of resistance. 2016. Cancer Lett. 372:147–56.
Noy R., Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. 2014. Immunity. 41:49–61.
Ni Y., Tao L, Chen C, Song H, Li Z, Gao Y, et al. The Deubiquitinase USP17 regulates the stability and nuclear function of IL-33. 2015. Int J Mol Sci. 16:27956–66.
Popovic D., El-Shami KM, Vadai E, Feldman M, Tzehoval E, Eisenbach L. Antimetastatic vaccination against Lewis lung carcinoma with autologous tumor cells modified to express murine interleukin 12. 1998. Clin Exp Metastasis. 16:623–32.
Pereg Y., Liu BY, O’Rourke KM, Sagolla M, Dey A, Komuves L, et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. 2010. Nat Cell Biol. 12:400–6.
Pal A., Donato NJ. Ubiquitin-specific proteases as therapeutic targets for the treatment of breast cancer. 2014. Breast Cancer Res. 16:461.
Quatromoni JG., Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. 2012. Am J Transl Res. 4:376–89.
Ramakrishna S., Suresh B, Lee EJ, Lee HJ, Ahn WS, Baek KH, et al. Lys-63-specific deubiquitination of SDS3 by USP17 regulates HDAC activity. 2011. J Biol Chem. 286:10505–14.
Ramakrishna S., Suresh B, Bae SM, Ahn WS, Lim KH, Baek KH, et al. Hyaluronan binding motifs of USP17 and SDS3 exhibit antitumor activity. 2012. PLoS ONE. 7:e37772.
Ramakrishna S., Suresh B, Baek KH. Biological functions of hyaluronan and cytokine-inducible deubiquitinating enzymes. 2015. Biochim Biophys Acta. 1855:83–91.
Shigdar S., Li Y, Bhattacharya S, O’Connor M, Pu C, Lin J, et al. Inflammation and cancer stem cells. 2014. Cancer Lett. 345:271–8.
Suresh R., Ali S, Ahmad A, Philip PA, Sarkar FH. The role of cancer stem cells in recurrent and drug-resistant lung cancer. 2016. Adv Exp Med Biol. 890:57–74.
Suarez-Carmona M., Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. 2017. Mol Oncol. 11:805–23.
Sica A., Porta C, Amadori A, Pasto A. Tumor-associated myeloid cells as guiding forces of cancer cell stemness. 2017. Cancer Immunol Immunother. 66:1025–36.
Todoric J., Antonucci L, Karin M. Targeting inflammation in cancer prevention and therapy. 2016. Cancer Prev Res. 9:895–905.
Visvader JE., Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. 2008. Nat Rev Cancer. 8:755–68.
Vallabhapurapu S., Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. 2008. Nat Immunol. 9:1364–70.
Verstrepen L., Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R, et al. TLR-4, IL-1R and TNF-R signaling to NFkappaB: variations on a common theme. 2008. Cell Mol Life Sci. 65:2964–78.
Valavanidis A., Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. 2013. Int J Environ Res Public Health. 10:3886–907.
Won M., Byun HS, Park KA, Hur GM. Post-translational control of NF-kappaB signaling by ubiquitination. 2016. Arch Pharm Res. 39:1075–84.
Wu Y., Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting snail1 degradation. 2017. Nat Commun. 8:14228.
Xie P. TRAF molecules in cell signaling and in human diseases. 2013. J Mol Signal. 8:7.
Ye H., Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. 1999. Mol Cell. 4:321–30.
Yang XD., Sun SC. Targeting signaling factors for degradation, an emerging mechanism for TRAF functions. 2015. Immunol Rev. 266:56–71.
Yeh DW., Chen YS, Lai CY, Liu YL, Lu CH, Lo JF, et al. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells. 2016. Cell Death Differ. 23:841–52.
Yeh DW., Huang LR, Chen YW, Huang CF, Chuang TH. Interplay between inflammation and stemness in cancer cells: the role of tolllike receptor signaling. 2016. J Immunol Res. 4368101.
Zarnegar BJ., Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. 2008. Nat Immunol. 9:1371–8.
Zhang S., Yuan J, Zheng R. Suppression of ubiquitin-specific peptidase 17 (USP17) inhibits tumorigenesis and invasion in nonsmall cell lung cancer Cells. 2016. Oncol Res. 24:263269.
A AG, Tyring SK, Rosen T. Beyond a decade of 5% imiquimod topical therapy. 2009. J Drugs Dermatol. 8: 467-474.
Balak DM, van Doorn MB, Arbeit RD, Rijneveld R, Klaassen E, Sullivan T et al. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. 2007. Clin Immunol.174: 63-72.
Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. 2007. J Leukoc Biol. 81: 1-5.
Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. 2012. Immunol Res. 53: 11-24.
Blasius AL, Beutler B. Intracellular toll-like receptors. 2010. Immunity. 32: 305-315.
Chamilos G, Gregorio J, Meller S, Lande R, Kontoyiannis DP, Modlin RL et al. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. 2012. Blood. 120: 3699-3707.
Chen T, Fu LX, Zhang LW, Yin B, Zhou PM, Cao N et al. Paeoniflorin suppresses inflammatory response in imiquimod-induced psoriasis-like mice and peripheral blood mononuclear cells (PBMCs) from psoriasis patients. 2016. Can J Physiol Pharmacol. 94: 888-894.
Christophers E. Psoriasis--epidemiology and clinical spectrum. 2001. Clin Exp Dermatol. 26: 314-320.
Chuang T, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. 2001. Biochim Biophys Acta. 1518: 157-161.
Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. 2010. Cancer Res. 70: 7465-7475.
Eberle FC, Bruck J, Holstein J, Hirahara K, Ghoreschi K. Recent advances in understanding psoriasis. 2016. F1000Res. 5.
Fanti PA, Dika E, Vaccari S, Miscial C, Varotti C. Generalized psoriasis induced by topical treatment of actinic keratosis with imiquimod. 2006. Int J Dermatol. 45: 1464-1465.
Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. 2018. Immunology. 186-195.
Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. 2009. J Exp Med. 206: 1983-1994.
Gilliet M, Conrad C, Geiges M, Cozzio A, Thurlimann W, Burg G et al. Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. 2004. Arch Dermatol. 140: 1490-1495.
Herwald H, Egesten A. On PAMPs and DAMPs. 2016. J Innate Immun. 8: 427-428.
Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. 2002. J Immunol. 168: 4531-4537.
Huang SW, Chen YJ, Wang ST, Ho LW, Kao JK, Narita M et al. Azithromycin impairs TLR7 signaling in dendritic cells and improves the severity of imiquimod-induced psoriasis-like skin inflammation in mice. 2016. J Dermatol Sci. 84: 59-70.
Huen AO, Rook AH. Toll receptor agonist therapy of skin cancer and cutaneous T-cell lymphoma. 2014. Curr Opin Oncol. 26: 237-244.
Imler JL, Hoffmann JA. Toll receptors in innate immunity. 2001. Trends Cell Biol. 11: 304-311.
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. 2014. Nat Immunol.5: 987-995.
Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Pitchaimani V et al. Naringenin ameliorates skin inflammation and accelerates phenotypic reprogramming from M1 to M2 macrophage polarization in atopic dermatitis NC/Nga mouse model. 2016. Exp Dermatol. 25: 404-407.
Kay E, Scotland RS, Whiteford JR. Toll-like receptors: Role in inflammation and therapeutic potential. 2014. Biofactors. 40: 284-294.
Kim HJ, Kim SH, Je JH, Shin DY, Kim DS, Lee MG. Increased expression of Toll-like receptors 3, 7, 8 and 9 in peripheral blood mononuclear cells in patients with psoriasis. 2016. Exp Dermatol. 25: 485-487.
Kircik LH, Del Rosso JQ. Anti-TNF agents for the treatment of psoriasis. 2009. J Drugs Dermatol. 8: 546-559.
Kusuba N, Kitoh A, Dainichi T, Honda T, Otsuka A, Egawa G et al. Inhibition of IL-17-committed T cells in a murine psoriasis model by a vitamin D analogue. 2018. J Allergy Clin Immunol. 141: 972-981 e910.
Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation. 2010. J Inflamm (Lond). 7: 57.
Lai CY, Yeh DW, Lu CH, Liu YL, Huang LR, Kao CY et al. Identification of Thiostrepton as a Novel Inhibitor for Psoriasis-like Inflammation Induced by TLR7-9. 2015. J Immunol. 195: 3912-3921.
Lai CY, Su YW, Lin KI, Hsu LC, Chuang TH. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation. 2017. J Immunol Res. 2017: 7807313.
Lee SM, Yip TF, Yan S, Jin DY, Wei HL, Guo RT et al. Recognition of Double-Stranded RNA and Regulation of Interferon Pathway by Toll-Like Receptor 10. 2018. Front Immunol. 9: 516.
Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. 2010. Mol Immunol. 47: 1083-1090.
Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases.2014. Int J Biol Sci. 10: 520-529.
Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. 2007. Nature. 445: 866-873.
Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis.2014. Annu Rev Immunol. 32: 227-255.
Mahil SK, Capon F, Barker JN. Update on psoriasis immunopathogenesis and targeted immunotherapy. 2016. Semin Immunopathol. 38: 11-27.
Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. 2006. Nat Rev Immunol. 6: 823-835.
Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. 2006. J Immunol. 177: 7303-7311.
McGettrick AF, O′Neill LA. Localisation and trafficking of Toll-like receptors: an important mode of regulation. 2010. Curr Opin Immunol. 22: 20-27.
Medzhitov R, Janeway C, Jr. The Toll receptor family and microbial recognition. 2000. Trends Microbiol. 8: 452-456.
Morimura S, Oka T, Sugaya M, Sato S. CX3CR1 deficiency attenuates imiquimod-induced psoriasis-like skin inflammation with decreased M1 macrophages. 2016. J Dermatol Sci. 82: 175-188.
Morizane S, Yamasaki K, Muhleisen B, Kotol PF, Murakami M, Aoyama Y et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. 2012. J Invest Dermatol. 132: 135-143.
Motwani MP, Gilroy DW. Macrophage development and polarization in chronic inflammation. 2015. Semin Immunol. 27: 257-266.
Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? 2014. Front Immunol. 5: 603.
Murray PJ. Macrophage Polarization. 2017. Annu Rev Physiol. 79: 541-566.
Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. 2009. Nat Genet. 41: 199-204.
Parisi L, Gini E, Baci D, Tremolati M, Fanuli M, Bassani B et al. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? 2018. J Immunol Res. 2018: 8917804.
Patel U, Mark NM, Machler BC, Levine VJ. Imiquimod 5% cream induced psoriasis: a case report, summary of the literature and mechanism. 2011. Br J Dermatol. 164: 670-672.
Perera GK, Di Meglio P, Nestle FO. Psoriasis. 2012. Annu Rev Pathol. 7: 385-422.
Rabeony H, Pohin M, Vasseur P, Petit-Paris I, Jegou JF, Favot L et al. IMQ-induced skin inflammation in mice is dependent on IL-1R1 and MyD88 signaling but independent of the NLRP3 inflammasome. 2015. Eur J Immunol. 45: 2847-2857.
Saadeh D, Kurban M, Abbas O. Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases. 2016. Exp Dermatol. 25: 415-421.
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F et al. Macrophage plasticity, polarization, and function in health and disease. 2018. J Cell Physiol. 233: 6425-6440.
Shibata S, Tada Y, Asano Y, Yanaba K, Sugaya M, Kadono T et al. IL-27 activates Th1-mediated responses in imiquimod-induced psoriasis-like skin lesions. 2013. J Invest Dermatol. 133: 479-488.
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. 2015. Cell Mol Life Sci. 72: 4111-4126.
Suarez-Farinas M, Arbeit R, Jiang W, Ortenzio FS, Sullivan T, Krueger JG. Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation. 2013. PLoS One. 8: e84634.
Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. 2004. J Leukoc Biol. 76: 514-519.
Ueyama A, Yamamoto M, Tsujii K, Furue Y, Imura C, Shichijo M et al. Mechanism of pathogenesis of imiquimod-induced skin inflammation in the mouse: a role for interferon-alpha in dendritic cell activation by imiquimod. 2014. J Dermatol. 41: 135-143.
Walter A, Schafer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B et al. Aldara activates TLR7-independent immune defence. 2013. Nat Commun. 4: 1560.
Wohn C, Ober-Blobaum JL, Haak S, Pantelyushin S, Cheong C, Zahner SP et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. 2013. Proc Natl Acad Sci U S A. 110: 10723-10728.
Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. 2002. J Immunol. 168: 554-561.
Zhang J, Lin Y, Li C, Zhang X, Cheng L, Dai L et al. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis. 2016. J Immunol. 197: 2131-2144.
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. 2014. Cell Signal. 26: 192-197. |