博碩士論文 106821011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:3.133.125.148
姓名 阮奕安(Yi-An Juan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Thirst control of water-seeking behavior in Drosophila)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 動機,像是口渴和飢餓,對於生存非常重要,在構造簡單的生物裡也是。生物運 用神經系統調控這些行為。但口渴究竟如何驅使神經系統去控制找水行為依舊不 清楚。因此我們利用果蠅(Drosophila melanogaster)去探討此動機行為。 先前文獻指出,多巴胺在果蠅找水行為中扮演重要角色。當我們讓果蠅缺失 dopamine receptor 中的 DAMB 時,發現到會影響找水行為。同樣的,我們在 Kenyon cell 和特定的 mushroom body output neuron (MBON)裡缺失 DAMB 也會影 響找水行為。Mushroom body (MB)在嗅覺的學習和記憶扮演重要的角色,而 Kenyon cell 和 MBON 都是 MB 的一部分。以上我們的實驗顯示,dopamine 在 MB 裡 可能調控找水行為。此外,發現這機制出現在能偵測濕度的感覺神經裡,DAMB 在 感覺神經裡缺失也會影響到找水行為。先前我們實驗室的數據指出,渴的果蠅中 Leucokinin (LK)神經的活性會上升,這代表渴可能調控 LK 的釋放。同時我們發 現在 DAN (Dopaminergic neuron)裡減弱 LK 受器的表現也會影響到找水行為。由 以上的結果,我們推測渴可能調控 LK 的釋放,並且影響到 dopamine 的釋放,進 而影響找水行為。綜合以上實驗結果,我們推測出找水行為的神經迴路。
摘要(英) Primary motivations, such as hunger and thirst, are essential for survival, even in simple animals. How thirst affects the nervous system to control water-seeking behavior is still unknown. We investigate these questions in the fruit flies Drosophila melanogaster. Previous studies have suggested that dopamine is important for thirst-driven water- seeking behavior in the flies, but detail mechanisms remain elusive. Here, we showed that flies lacking dopamine receptor DAMB exhibit impaired water-seeking behavior. Knockdown of DAMB in Kenyon cells (KCs) and mushroom body output neurons (MBONs) caused defective water-seeking behavior in thirsty flies. KCs and MBONs are two major cell types in the mushroom body (MB), a paired neuropil important for olfactory learning and memory. Our data, therefore, suggest that thirst regulates water- seeking behavior via dopamine signals in the MB circuit. Furthermore, we found that RNAi knockdown of DAMB in sensory neurons that detect environmental humidity as well as in the neurons postsynaptic to these sensory neurons also compromised thirsty flies’ water-seeking behavior. These data indicate that thirst might modulate both periphery and central neural circuits to control flies’ response to water vapor. We recently found that the neuronal activity of a pair of leucokinin-releasing neurons in the fly’s brain elevates when a fly is deprived of water. Interestingly, knockdown of leucokinin receptor in dopaminergic neuron (DANs) innervating the MB impaired water-seeking behavior in thirsty flies. We hypothesize that the motivational property of thirst in the fruit flies is mediated by leucokinin and dopamine signals. We found that thirst regulates water- seeking behavior by inhibiting PAM-β′2mp DANs as well as activating PAM-β2β′2a and PAM-β′2a DANs. Taken together, we propose a putative circuit mechanism mediating thirst-control of water-seeking behavior in Drosophila.
關鍵字(中) ★ 果蠅
★ 蕈形體
★ 多巴胺
關鍵字(英) ★ Drosophila
★ Mushroom body
★ Dopamine
★ Leucokinin
論文目次 中文摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
Abbreviation v
Introduction 1
Thirst 1
Sensory neurons 2
Hygrosensory projection neuron 4
Kenyon cells, Mushroom body output neurons and Dopaminergic neurons 5
Dopamine 8
Leucokinin 8
Overview of the neural circuits involved in water vapor detection and thirst-control of water-seeking behavior 10
Key Resources Table 11
Materials and Methods 13
Flay strains 13
Water-seeking assay 13
Optogenetics 14
Immunofluorescence staining 14
Results 15
Thirst modulation of PAM-β′2 DANs in promoting water-seeking behavior 16
DAMB regulates water-seeking behavior 17
Thirst modulation of central circuits in promoting water-seeking behavior 18
Leucokinin promote water-seeking behavior via dopaminergic neurons in thirsty flies 21
Thirst modulation of periphery circuit in promoting water-seeking behavior 22
Discussion 26
Figures 29
Reference 52
參考文獻 Abrieux, A., S. Debernard, A. Maria, C. Gaertner, S. Anton, C. Gadenne and L. Duportets (2013). "Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect." PloS one 8(9): e72785-e72785.
Abuin, L., B. Bargeton, M. H. Ulbrich, E. Y. Isacoff, S. Kellenberger and R. Benton (2011). "Functional architecture of olfactory ionotropic glutamate receptors." Neuron 69(1): 44-60.
Al-Anzi, B., E. Armand, P. Nagamei, M. Olszewski, V. Sapin, C. Waters, K. Zinn, R. J. Wyman and S. Benzer (2010). "The leucokinin pathway and its neurons regulate meal size in Drosophila." Current biology : CB 20(11): 969-978.
Alekseyenko, O. V., Y.-B. Chan, R. Li and E. A. Kravitz (2013). "Single dopaminergic neurons that modulate aggression in Drosophila." Proceedings of the National Academy of Sciences of the United States of America 110(15): 6151-6156.
Altner, H. and R. Loftus (1985). "Ultrastructure and Function of Insect Thermo- And Hygroreceptors." Annual Review of Entomology 30(1): 273-295.
Altner, H., H. Sass and I. Altner (1977). "Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana." Cell and Tissue Research 176(3): 389-405.
Andersson, B. (1952). "Polydipsia caused by intrahypothalamic injections of hypertonic NaCl-solutions." Experientia 8(4): 157-158.
Andretic, R., B. van Swinderen and R. J. Greenspan (2005). "Dopaminergic Modulation of Arousal in Drosophila." Current Biology 15(13): 1165-1175.
Aso, Y., K. Grubel, S. Busch, A. B. Friedrich, I. Siwanowicz and H. Tanimoto (2009). "The mushroom body of adult Drosophila characterized by GAL4 drivers." J Neurogenet 23(1-2): 156-172.
Aso, Y., D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer, T. T. Ngo, H. Dionne, L. F. Abbott, R. Axel, H. Tanimoto and G. M. Rubin (2014). "The neuronal architecture of the mushroom body provides a logic for associative learning." Elife 3: e04577.
Aso, Y., D. Sitaraman, T. Ichinose, K. R. Kaun, K. Vogt, G. Belliart-Guérin, P.-Y. Plaçais, A. A. Robie, N. Yamagata, C. Schnaitmann, W. J. Rowell, R. M. Johnston, T.-T. B. Ngo, N. Chen, W. Korff, M. N. Nitabach, U. Heberlein, T. Preat, K. M. Branson, H. Tanimoto and G. M. Rubin (2014). "Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila." eLife 3: e04580.
Bang, S., S. Hyun, S.-T. Hong, J. Kang, K. Jeong, J.-J. Park, J. Choe and J. Chung (2011). "Dopamine Signalling in Mushroom Bodies Regulates Temperature-Preference Behaviour in Drosophila." PLOS Genetics 7(3): e1001346.
Bar-Zeev, M. (1967). "Oviposition of Aedes aegypti L. on a Dry Surface and Hygroreceptors." Nature 213(5077): 737-738.
Barron, A. B., E. Søvik and J. L. Cornish (2010). "The roles of dopamine and related compounds in reward-seeking behavior across animal phyla." Frontiers in behavioral neuroscience 4: 163-163.
Cameron, P., M. Hiroi, J. Ngai and K. Scott (2010). "The molecular basis for water taste in Drosophila." Nature 465(7294): 91-95.
Cameron, P., M. Hiroi, J. Ngai and K. Scott (2010). "The molecular basis for water taste in Drosophila." Nature 465: 91.
Cavey, M., B. Collins, C. Bertet and J. Blau (2016). "Circadian rhythms in neuronal activity propagate through output circuits." Nature neuroscience 19(4): 587-595.
Chen, Z., Q. Wang and Z. Wang (2010). "The Amiloride-Sensitive Epithelial Na<sup>+</sup> Channel PPK28 Is Essential for <em>Drosophila</em> Gustatory Water Reception." The Journal of Neuroscience 30(18): 6247-6252.
Chuong, A. S., M. L. Miri, V. Busskamp, G. A. Matthews, L. C. Acker, A. T. Sorensen, A. Young, N. C. Klapoetke, M. A. Henninger, S. B. Kodandaramaiah, M. Ogawa, S. B. Ramanlal, R. C. Bandler, B. D. Allen, C. R. Forest, B. Y. Chow, X. Han, Y. Lin, K. M. Tye, B. Roska, J. A. Cardin and E. S. Boyden (2014). "Noninvasive optical inhibition with a red-shifted microbial rhodopsin." Nat Neurosci 17(8): 1123-1129.
Crittenden, J. R., E. M. Skoulakis, K. A. Han, D. Kalderon and R. L. Davis (1998). "Tripartite mushroom body architecture revealed by antigenic markers." Learning & memory (Cold Spring Harbor, N.Y.) 5(1-2): 38-51.
Croset, V., R. Rytz, S. F. Cummins, A. Budd, D. Brawand, H. Kaessmann, T. J. Gibson and R. Benton (2010). "Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction." PLOS Genetics 6(8): e1001064.
Damkjær, M., G. L. Isaksson, J. Stubbe, B. L. Jensen, K. Assersen and P. Bie (2013). "Renal renin secretion as regulator of body fluid homeostasis." Pflügers Archiv - European Journal of Physiology 465(1): 153-165.
de Haro, M., I. Al-Ramahi, J. Benito-Sipos, B. López-Arias, B. Dorado, J. A. Veenstra and P. Herrero (2010). "Detailed analysis of leucokinin-expressing neurons and their candidate functions in the Drosophila nervous system." Cell and Tissue Research 339(2): 321-336.
Dionne, H., K. L. Hibbard, A. Cavallaro, J.-C. Kao and G. M. Rubin (2018). "Genetic Reagents for Making Split-GAL4 Lines in Drosophila." Genetics 209(1): 31-35.
Draper, I., P. T. Kurshan, E. McBride, F. R. Jackson and A. S. Kopin (2007). "Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis." Dev Neurobiol 67(3): 378-393.
Enjin, A., E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio and M. C. Stensmyr (2016). "Humidity Sensing in Drosophila." Curr Biol 26(10): 1352-1358.
Fitzsimons, J. T. (1971). "The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat′s diencephalon." The Journal of physiology 214(2): 295-303.
Frank, D. D., A. Enjin, G. C. Jouandet, E. E. Zaharieva, A. Para, M. C. Stensmyr and M. Gallio (2017). "Early Integration of Temperature and Humidity Stimuli in the Drosophila Brain." Current biology : CB 27(15): 2381-2388.e2384.
Gallio, M., T. A. Ofstad, L. J. Macpherson, J. W. Wang and C. S. Zuker (2011). "The coding of temperature in the Drosophila brain." Cell 144(4): 614-624.
Goodwin, P. R., A. Meng, J. Moore, M. Hobin, T. A. Fulga, D. Van Vactor and L. C. Griffith (2018). "MicroRNAs Regulate Sleep and Sleep Homeostasis in Drosophila." Cell reports 23(13): 3776-3786.
Han, K.-A., N. S. Millar, M. S. Grotewiel and R. L. Davis (1996). "DAMB, a Novel Dopamine Receptor Expressed Specifically in Drosophila Mushroom Bodies." Neuron 16(6): 1127-1135.
Hearn, M. G., Y. Ren, E. W. McBride, I. Reveillaud, M. Beinborn and A. S. Kopin (2002). "A Drosophila dopamine 2-like receptor: Molecular characterization and identification of multiple alternatively spliced variants." Proc Natl Acad Sci U S A 99(22): 14554-14559.
Huetteroth, W., E. Perisse, S. Lin, M. Klappenbach, C. Burke and S. Waddell (2015). "Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila." Current biology : CB 25(6): 751-758.
Inagaki, H. K., S. Ben-Tabou de-Leon, A. M. Wong, S. Jagadish, H. Ishimoto, G. Barnea, T. Kitamoto, R. Axel and D. J. Anderson (2012). "Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing." Cell 148(3): 583-595.
Inoshita, T. and T. Tanimura (2006). "Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila." Proceedings of the National Academy of Sciences of the United States of America 103(4): 1094-1099.
Jourjine, N., B. C. Mullaney, K. Mann and K. Scott (2016). "Coupled Sensing of Hunger and Thirst Signals Balances Sugar and Water Consumption." Cell 166(4): 855-866.
Kaun, K. R., A. V. Devineni and U. Heberlein (2012). "Drosophila melanogaster as a model to study drug addiction." Human genetics 131(6): 959-975.
Kim, J., K. Inoue, J. Ishii, W. B. Vanti, S. V. Voronov, E. Murchison, G. Hannon and A. Abeliovich (2007). "A MicroRNA feedback circuit in midbrain dopamine neurons." Science (New York, N.Y.) 317(5842): 1220-1224.
Knecht, Z. A., A. F. Silbering, J. Cruz, L. Yang, V. Croset, R. Benton and P. A. Garrity (2017). "Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila." Elife 6.
Liedtke, W. and J. M. Friedman (2003). "Abnormal osmotic regulation in <em>trpv4<sup>-/-</sup></em> mice." Proceedings of the National Academy of Sciences 100(23): 13698-13703.
Lin, M., S. J. Liu and I. T. Lim (2005). "Disorders of Water Imbalance." Emergency Medicine Clinics of North America 23(3): 749-770.
Lin, S., D. Owald, V. Chandra, C. Talbot, W. Huetteroth and S. Waddell (2014). "Neural correlates of water reward in thirsty Drosophila." Nat Neurosci 17(11): 1536-1542.
Liu, L., Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim and M. J. Welsh (2007). "Drosophila hygrosensation requires the TRP channels water witch and nanchung." Nature 450: 294.
Liu, Y., J. Luo and D. R. Nässel (2016). "The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage." Frontiers in molecular neuroscience 9: 97-97.
Luan, Z., C. Quigley and H.-S. Li (2015). "The putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis." Scientific Reports 5: 7993.
Mao, Z. and R. L. Davis (2009). "Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity." Frontiers in neural circuits 3: 5-5.
Marella, S., K. Mann and K. Scott (2012). "Dopaminergic modulation of sucrose acceptance behavior in Drosophila." Neuron 73(5): 941-950.
Mauss, A. S., C. Busch and A. Borst (2017). "Optogenetic Neuronal Silencing in Drosophila during Visual Processing." Scientific Reports 7(1): 13823.
Mohammad, F., J. C. Stewart, S. Ott, K. Chlebikova, J. Y. Chua, T.-W. Koh, J. Ho and A. Claridge-Chang (2017). "Optogenetic inhibition of behavior with anion channelrhodopsins." Nature Methods 14: 271.
Monastirioti, M. (2003). "Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster." Developmental Biology 264(1): 38-49.
Neckameyer, W. S. (1998). "Dopamine and mushroom bodies in Drosophila: experience-dependent and -independent aspects of sexual behavior." Learning & memory (Cold Spring Harbor, N.Y.) 5(1-2): 157-165.
Ni, L., M. Klein, K. Svec, G. Budelli, E. C. Chang, R. Benton, A. D. T. Samuel and P. A. Garrity (2015). "The Ionotropic Receptors IR21a and IR25a mediate cool sensing in <em>Drosophila</em>." bioRxiv: 032540.
Osterwalder, T., K. S. Yoon, B. H. White and H. Keshishian (2001). "A conditional tissue-specific transgene expression system using inducible GAL4." Proceedings of the National Academy of Sciences of the United States of America 98(22): 12596-12601.
Owald, D., J. Felsenberg, C. B. Talbot, G. Das, E. Perisse, W. Huetteroth and S. Waddell (2015). "Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila." Neuron 86(2): 417-427.
Pauli, A., F. Althoff, R. A. Oliveira, S. Heidmann, O. Schuldiner, C. F. Lehner, B. J. Dickson and K. Nasmyth (2008). "Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons." Developmental cell 14(2): 239-251.
Pavlowsky, A., J. Schor, P.-Y. Plaçais and T. Preat (2018). "A GABAergic Feedback Shapes Dopaminergic Input on the Drosophila Mushroom Body to Promote Appetitive Long-Term Memory." Current biology : CB 28(11): 1783-1793.e1784.
Perttunen, V. and H. ErkkilÄ (1952). "Humidity Reaction in Drosophila melanogaster." Nature 169(4289): 78-78.
Qi, C. and D. Lee (2014). "Pre- and Postsynaptic Role of Dopamine D2 Receptor DD2R in Drosophila Olfactory Associative Learning." Biology 3(4): 831-845.
Rytz, R., V. Croset and R. Benton (2013). "Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond." Insect Biochem Mol Biol 43(9): 888-897.
Sayeed, O. and S. Benzer (1996). "Behavioral genetics of thermosensation and hygrosensation in Drosophila." Proceedings of the National Academy of Sciences of the United States of America 93(12): 6079-6084.
Selcho, M., D. Pauls, K.-A. Han, R. F. Stocker and A. S. Thum (2009). "The role of dopamine in Drosophila larval classical olfactory conditioning." PloS one 4(6): e5897-e5897.
Shyu, W.-H., T.-H. Chiu, M.-H. Chiang, Y.-C. Cheng, Y.-L. Tsai, T.-F. Fu, T. Wu and C.-L. Wu (2017). "Neural circuits for long-term water-reward memory processing in thirsty Drosophila." Nature Communications 8: 15230.
Silbering, A. F., R. Rytz, Y. Grosjean, L. Abuin, P. Ramdya, G. S. X. E. Jefferis and R. Benton (2011). "Complementary Function and Integrated Wiring of the Evolutionarily Distinct <em>Drosophila</em> Olfactory Subsystems." The Journal of Neuroscience 31(38): 13357-13375.
Thrasher, T. N., L. C. Keil and D. J. Ramsay (1982). "LESIONS OF THE ORGANUM VASCULOSUM OF THE LAMINA TERMINALIS (OVLT) ATTENUATE OSMOTICALLY-INDUCED DRINKING AND VASOPRESSIN SECRETION IN THE DOG." Endocrinology 110(5): 1837-1839.
Titlow, J. S., B. R. Johnson and S. R. Pulver (2015). "Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics." Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience 13(3): A166-A173.
Ueno, T., J. Tomita, S. Kume and K. Kume (2012). "Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster." PloS one 7(2): e31513-e31513.
van Dijk, D., E. Sharon, M. Lotan-Pompan, A. Weinberger, E. Segal and L. B. Carey (2017). "Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators." Genome research 27(1): 87-94.
Van Swinderen, B. and R. Andretic (2011). "Dopamine in Drosophila: setting arousal thresholds in a miniature brain." Proceedings. Biological sciences 278(1707): 906-913.
Vogt, K., C. Schnaitmann, K. V. Dylla, S. Knapek, Y. Aso, G. M. Rubin and H. Tanimoto (2014). "Shared mushroom body circuits underlie visual and olfactory memories in Drosophila." eLife 3: e02395-e02395.
Widmann, A., M. Artinger, L. Biesinger, K. Boepple, C. Peters, J. Schlechter, M. Selcho and A. S. Thum (2016). "Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae." PLOS Genetics 12(10): e1006378.
Yokohari, F. (1978). "Hygroreceptor mechanism in the antenna of the cockroachPeriplaneta." Journal of comparative physiology 124(1): 53-60.
Zandawala, M., R. Marley, S. A. Davies and D. R. Nässel (2018). "Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila." Cellular and molecular life sciences : CMLS 75(6): 1099-1115.
Zandawala, M., M. E. Yurgel, M. J. Texada, S. Liao, K. F. Rewitz, A. C. Keene and D. R. Nässel (2018). "Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin." PLOS Genetics 14(11): e1007767.
指導教授 林書葦 陳盛良(Suewei Lin Shen-Liang Chen) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明